Posts Tagged ‘working memory’

Fast ForWord vs. Cogmed

January 5, 2011

Be Amazing Learning offers programs that address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain information they are exposed to, whether in the classroom or in daily life.

Two programs we use most frequently are Fast ForWord and Cogmed. Both programs are based on the concept of neuroplasticity (the lifelong ability of the brain to reorganize neural pathways based on new experiences). They both are computer-based interventions with rigorous daily protocols. And both have very solid foundational research behind them: Fast ForWord research and Cogmed research.

The programs differ in the cognitive skills they develop. Fast ForWord primarily develops auditory processing rates and auditory working memory, with additional training in sequencing and sustained attention. Cogmed primarily develops working memory (auditory and visual-spatial) and attention skills.

At Be Amazing Learning we recommend one or both of the programs for students, depending on the specific learning or behavior challenge they are dealing with. For example, we typically will recommend Cogmed for students struggling with ADD or ADHD. Cogmed addresses the underlying causes of inattentive behavior and improves attention by developing working memory and the ability to focus on multiple tasks and ignore distractions. (Poor auditory processing abilities can also contribute to attention challenges, and in these cases, the Fast ForWord programs may also be an effective intervention.)

Similarly, for students with dyslexia, we typically recommend the Fast ForWord programs, as they attack the auditory processing disorders that cause reading difficulties. And there’s great research on students with dyslexia showing significant improvements in reading and oral language skills on a number of assessments, as well as normalization of activity in critical areas of the brain used for reading after Fast ForWord training.

And in some cases, such as for students struggling with executive function disorder, we might recommend both programs, because they both effectively develop and strengthen the cognitive skills associated with successful executive function, including :

  • Memory – The ability to store information and ideas.
  • Attention – The ability to focus on information and tasks, and ignore distractions.
  • Processing Rate – The rate at which a student is able to accurately perceive and manipulate information.
  • Sequencing – Placing the detail of information in its accustomed order.

The bottom line is that nearly every child can benefit from improved brain processing efficiency.  Wherever your child is, Be Amazing Learning can help move them forward. Our programs have been proven to be effective with many types of learners of all ages, from students with diagnosed learning difficulties, to those simply struggling with homework or reading. With Cogmed and Fast ForWord at our disposal, we can design an effective training program to develop a range of foundational cognitive skills and improve academic potential and performance.

Traditional Tutoring vs. Cognitive Training

January 4, 2011

Traditional tutoring offers additional help in a particular subject area or with a particular skill. It can be an effective addition to content delivered in the classroom, especially because it can frequently be tailored to a child’s individual needs.

Be Amazing Learning is different because the programs we offer (Fast ForWord and Cogmed) address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain content they are exposed to, whether in the classroom or with a tutor.

Additionally, training cognitive skills with Be Amazing Learning is a one-time shot: kids build their brain fitness with the programs, then move on to better academic performance. Once children have cognitive training, they stay “fit” by using their new cognitive skills. Studies have shown that the improvements in cognitive skills we can help your child achieve are both substantial and enduring. For example, a 4-year longitudinal study conducted at Dallas Independent School District that showed that students who trained with Fast ForWord programs achieved significant gains in reading, and maintained those gains relative to their peers.

For more information about how cognitive training can help your child, visit our Web site or call (800) 792-4809.

Brain training games rise in popularity

December 27, 2010

From the San Jose Mercury News:

The idea of “brain training” has been gaining popularity since a 2006 study from the National Institutes of Health suggested that a cognitive training program can have lasting, though narrow, benefits. Numerous companies are touting products such as online games and software packages designed to improve mental sharpness and memory. More are sure to be developed as the number of users, both in the classroom and at home, continues to grow.

The article cites Alvaro Fernandez,CEO of market research firm SharpBrains. Fernandez “estimates that consumers spent about $70 million on them last year, up 40 percent from $50 million in 2008. Schools, employers and health care companies spent more than $200 million in 2009.”

The article focuses primarily on aging populations, who, according to Fernandez, generally chose a brain fitness program out of a desire to stave off age-induced mental decline, or to treat a brain injury or problem. At Be Amazing Learning, we have worked with older learners, but our focus tends to be the beginning of life: building brain fitness abilities (working memory, processing speeds, sustained attention abilities) as a foundation for future academic success.

It’s worth noting, however, that there are similarities between programs designed for young and older learners. In fact, the Posit Science programs that are mentioned in the article, are based on some of the same technology and research that are behind the Fast ForWord programs that we offer for young learners (Dr. Michael Merzenich, the founder of Posit Science, was one of the founders of Scientific Learning, which created the Fast ForWord programs.)

The Mercury News article closes with great advice: do your research before investing in a brain fitness solution. We have previously linked to SharpBrains’ 10 question evaluation of brain fitness programs. It’s definitely worth a look.

Good News For Control Freaks!

December 7, 2010

So screams the first line of a recent article on Science Daily. What’s the good news? A study, published in the journal Nature Neuroscience, shows that “having some authority over how one takes in new information significantly enhances one’s ability to remember it.”

The study compared active and passive learning in a novel way: participants were presented with an array of objects to be memorized, masked by a gray screen. A “viewing window” allowed the study participants to see one object at a time. To test active learning, the participants were able to control the window using a computer mouse. Passive learners viewed a recorded version of the viewing made by an earlier active learner.

The study found significant differences in brain activity in the active and passive learners. Those who had active control over the viewing window were significantly better than their peers at identifying the original objects and their locations.

Cool enough, but to get to a neurological explanation for the phenomenon, the researchers repeated the study with individuals with amnesia (the impaired ability to learn new things) as a result of damage to the hippocampus (the portion of the brain responsible for many memory-related functions). For these participants, there was no difference in recall between active and passive learning.

Additionally, brain imaging of healthy participants indicated that:

Hippocampal activity was highest in the active subjects’ brains during these tests. Several other brain structures were also more engaged when the subject controlled the viewing window, and activity in these brain regions was more synchronized with that of the hippocampus than in the passive trials.

We’re not so sure what to make of the neurological findings in the study, but the clear differences between active and passive learning have lots of relevance for education. It explains why television makes a lousy teaching tool, and why actively engaging students in reading (for example, stopping to ask them questions about what they’ve just read or what they expect to happen next) is helpful for students.

Getting to the truth on ADHD diagnosis

December 2, 2010

We just came across two studies related to the diagnosis of Attention Deficit/Hyperactivity Disorder (ADHD) that could flat-out baffle a parent struggling to get to the root of their child’s struggles:

  • The first, a study by the Centers for Disease Control and Prevention, indicates that as many 10% of American children may have ADHD. Additionally, this represents a 22% increase in the occurrence of ADHD between 2003 and 2007 (the last year for which data are available). Researchers site increased awareness and better screening as possible causes for the increase.
  • The second study, by Michigan State Economist Todd Elder, (to be published in an upcoming issue of the Journal of Health Economics), indicates that as many as 1 million students in the United States are mis-diagnosed with ADHD. According to Elder, many of the students who exhibit poor behavior and inattention are simply younger than their classmates. The inattentive behavior, says Elder, may simply “be because he’s 5 and the other kids are 6. There’s a big difference between a 5-year-old and a 6-year-old, and teachers and medical practitioners need to take that into account when evaluating whether children have ADHD.”

ADHD diagnosis is challenging, because it is generally based on a clinical evaluation of reported behavior. We’ve previously posted on recent efforts to develop a clinical test for attention challenges, and there is research as well that indicates that ADHD may be a genetic disorder.

It’s important to accurately diagnose attention or other learning challenges that may be holding a student back from reaching his potential. However, many attention and other learning challenges, whether or not they reach the level of a diagnosed disorder, can be addressed by developing the foundational cognitive skills that support attentive behavior and learning. For example, working memory and processing speed are critical cognitive skills that may be less than fully developed in students with attention challenges (even if those challenges don’t rise to the level of a formal ADHD diagnosis). Scientifically-validated programs exist to improve these critical skills in all learners, whether typically developing or struggling with a diagnosed learning difficulty.

Working memory and reading comprehension

November 29, 2010

Reading comprehension is a complex task requiring the synthesis of several cognitive functions:

  • Sequencing is critical for making meaning from text (the sentence “Man bites dog” has a very different meaning from “Dog bites man”).
  • Processing speed must be developed for the brain must be able to successfully process visual and auditory stimuli associated with reading
  • Working memory must be sufficiently developed to remember the beginning of a sentence when you get to the end. Or the first sentence of a paragraph when you get to the last.

Several studies have looked at the impact of Fast ForWord, a training program designed to improve these critical cognitive skills. One that we like a lot looked at reading comprehension improvements in middle and high school students in the Dallas Independent School District. The students made a 22-month gain in age-equivalent reading scores after just 6 months of training.

A recent study, published in May 2010 in the Journal Reading and Writing (link is to abstract only) examined the impact of Cogmed Working Memory Training on reading comprehension abilities. The study also examined the relationship between working memory and reading achievement, hypothesizing that working memory problems can be a root cause of poor reading comprehension. The researchers found Cogmed training to significantly improve reading comprehension development, and working memory measures were shown to “be related with children’s word reading and reading comprehension.”

Having a brain that can efficiently process the visual and auditory inputs that take place during reading is critical for successful comprehension. Students whose brains are not processing efficiently can struggle with reading comprehension. But research shows that programs, such as Fast ForWord and Cogmed, that build efficiency in skills such as processing rates and working memory can have a positive impact on comprehension abilities.

Be Amazing Learning Offers Cogmed Programs for Attention Challenges

November 15, 2010

Be Amazing Learning is pleased to announce that we now offer Cogmed Working Memory Training Programs!

Cogmed is a computer-based solution for attention problems caused by poor working memory. Cogmed combines cognitive neuroscience with innovative computer game design and Be Amazing Learning’s close professional support to deliver substantial and lasting benefits. The program consists of 25 daily training sessions, each 30-45 minutes long. Individuals work on the program five days per week for five weeks. Each session consists of a selection of various tasks that target the different aspects of working memory. The difficulty level of each task is adjusted in real time according to a highly sensitive and specific algorithm.

Individuals train on a computer at home, in school, or at work. During training, performance is tracked online and can be viewed by the individual and learning specialists from Be Amazing Learning, who provide feedback and support throughout the training.

Cogmed can be an effective intervention for ADD/ADHD and Executive Function Disorder, as well as for the 1 in 10 typically developing students who have working memory challenges that are holding them back from reaching their full potential.

To find out more or get started, visit our Web site or call (800) 792-4809.

You might also be interested in these recent posts on the importance of working memory for learning:

What’s going on in there? A look inside the teenage brain

November 12, 2010

Research tells us that significant brain development occurs in the first few years of life: the brain reaches 95% of its adult size by age 6.

But recent brain studies show that significant brain development occurs around adolescence. Up to age 12, the brain is adding gray matter (or, to put it more technically, “cortical thickness” increases), at which point, gray matter begins to thin, as the brain prunes connections that developed in childhood, but are no longer deemed necessary.

The PBS series Frontline recently dedicated a show to the teenage brain. The show’s Web site is loaded with content, including the transcript of interviews with several researchers who are looking at the development of the teenage brain. One in particular that caught our eye is with Dr. Jay Giedd, a neuroscientist at the National Institute of Mental Health. Dr. Giedd is focused on how to turn what we’re learning about the brain into practical advice for parents, teachers and teenagers. Now that we have established the concept of brain plasticity, says Giedd, researchers are turning to:

… the forces that can guide this plasticity. How do we optimize the brain’s ability to learn? Are schools doing a good job? Are we as parents doing a good job? And the challenge now is to … bridging the gap between neuroscience and practical advice for parents, teachers and society. We’re not there yet, but we’re closer than ever, and it’s really an exciting time in neuroscience.

At Be Amazing Learning, we regularly work with teenagers who themselves (or whose parents) are looking for solutions for their developing brains. In many cases, these teens have difficulty planning, organizing, and paying attention to and remembering details. Cogmed and Fast ForWord programs can be effective interventions for children and teens with these “executive function” deficits because they develop and strengthen the cognitive skills associated with successful executive function, including working memory, attention and processing rates.

The Frontline series on the teenage brain is fantastic, and there’s a bunch of information available on the show Web site. We’ll be highlighting additional interviews in future posts.

Music on the brain

November 9, 2010

The relationship between music and language (and to a degree, overall academic performance) has been explored extensively in the research. We’ve previously posted on the topic (and have also posted on why it’s so hard to shake a song that’s stuck in your head, which isn’t really as academically important, but is interesting…).

Most parents are familiar with the so-called Mozart Effect, wherein exposure to music (or more specifically, classical music) (or even more specifically music written by Mozart) (or if  you really want to get down to brass tacks, the first movement “allegro con spirito” of the Mozart Sonata KV 448 for Two Pianos in D Major) can improve academic performance. The idea was born out of a 1993 study published in Nature that reported that individuals who listened to the Mozart Sonata scored significantly higher on standard ized tests of abstract/spatial reasoning ability than those who were instructed to relax or those who just sat there in silence.

Listening to music we like does make us feel good, which, in turn, increases focus and attention, which improves performance on many tests of mental sharpness. According to an article in the Racine Journal Times, some studies have shown “improvement in the kind of mental skills we use in doing complex math problems, interpreting driving directions and pondering how to fit a large bookcase in the trunk of a small car.”

But the idea that simply listening to music will have a profound and lasting effect on academic performance has generally been dismissed. (For a thorough analysis of the shortcomings of the initial research, check out this post at the Sharp Brains blog). Instead, researchers (including, says the Journal Times, those who conducted the original “Mozart Effect” study) have shifted to focus on the cognitive effect of learning to make music. Says the Journal Times: “If you want music to sharpen your senses, boost your ability to focus and perhaps even improve your memory, the latest word from science is you’ll need more than hype and a loaded iPod. You gotta get in there and play. Or sing, bang or pluck.”

Learning to make music engages and demands coordination among many brain regions, including those that process sights, sounds, emotions and memories, says Dr. Gottfried Schlaug, a Harvard University neurologist.

Years ago, Schlaug found a glaring and suggestive difference between the brains of 30 professional musicians and 30 non-musician adults of matched age and gender.

In the musicians, the bundle of connective fibers that carry messages between the brain’s right and left hemispheres – a structure called the corpus callosum – was larger and denser on average than that of their non-musical peers. The brawnier bridge was particularly notable toward the rear of the brain, at the crossing that links areas responsible for sensory perception and voluntary movement.

It suggested not only that musicians might be able to more nimbly react to incoming information but also that their brains might be more resilient and adaptable, allowing right and left hemispheres, which specialize in separate functions, to work better together.

Schlaug and colleagues also found that the musicians who had begun their musical training before the age of 7 showed the most pronounced differences – suggesting an early start might rewire the brain most dramatically.

Over at the New Science of Learning Blog, Dr. William Jenkins (one of the neuroscientists behind the Fast ForWord programs), highlights a recent article, Music Training for the Development of Auditory Skills by Nina Kraus and Bharath Chandrasekaran, that examines three specific areas of brain function where music training positively affects function:
  • Transfer of cognitive skills: Music has been shown to affect how the brain processes pitch, timing and timbre. Along with describing music, these are also key elements of speech and language—that are positively affected by musical training.
  • Fine tuning of auditory skills: “Musicians, compared with non-musicians, more effectively represent the most meaningful, information-bearing elements in sounds — for example, the segment of a baby’s cry that signals emotional meaning, the upper note of a musical chord or the portion of the Mandarin Chinese pitch contour that corresponds to a note along the diatonic musical scale.” While music does not appear to affect visual memory or attention, research shows that it does affect auditory verbal memory and auditory attention.
  • Better recognition of “regularities”: The human brain is wired to filter regular predictable patterns out from the noise surrounding us (e.g., we can pick out a friend’s voice in a room filled with many other sounds and voices.) Musical training enhances this cognitive ability.

Based on this information, Kraus and Chandresekaran argue “that active engagement with music promotes an adaptive auditory system that is crucial for the development of listening skills. An adaptive auditory system that continuously regulates its activity based on contextual demands is crucial for processing information during everyday listening tasks.”

So while the idea of a Mozart Effect, by which we can improve academic performance simply by exposing children to music, seems feeble at best, there are significant cognitive benefits to musical training, particularly in the area of language and processing abilities.

 

Baby’s Developing Brain

November 3, 2010

Over at the Science of Learning blog, Dr. Martha Burns has just completed a two part series on the development of the infant brain. The good news and bad news for parents is that we play a significant role.

In August, Dr. Burns described the infant brain as a learning machine: working to determine the relevant information about language and the environment, while designing itself, quickly, to become an expert in said language and environment. The parents’ role is to provide an environment that fosters the development of skills that will be helpful later in life.

In her recent conclusion, Dr. Burns provides some more detail on how parents can help the developing infant brain, especially with the goal of developing the kind of sustained attention skills required in a classroom. The brain, says Dr. Burns, wires itself for learning based on early stimulation and experience. To facilitate this development:

  • Parents of infants can build sustained attention to speech by ensuring that children are seeing and hearing speech at the same time. In other words, get in their face!
  • Parents of older children should set aside time for reading together or talking about the highlights of the day.

Getting a child accustomed to sitting for 30 minutes and listening to songs or stories will establish the attention skills required in school.

Oh. And unfortunately, while this probably goes without saying, lay off the TV:

The American Pediatric Association has recently published research indicating that too much exposure to television during the first two years of life seems to increase the likelihood that the child will be diagnosed with Attention Deficit Disorder in the early school years.

We have previously posted about the importance of engaging children with language. From that posting:

Particularly in the critical stage of brain development (when only stimulation is required to develop neural pathways), continuous exposure to language is of utmost importance. The differences in students early experiences with language and literacy are meaningful: by first grade, children whose parents have engaged them with language know twice as many words as those whose parents have not. And it continues: high school seniors near the top of their class know four times as many words as their lower-performing peers, whose vocabularies are equivalent to high-performing third graders.


%d bloggers like this: