Several years ago, a colleague recommended M. Mitchel Waldrop’s book Complexity: The Emerging Science at the Edge of Order and Chaos. I’m not going to do justice to the, well, complexity, of complexity theory, but my two takeaways were that:
- Incredibly complex systems can emerge very quickly from very basic rules or parameters. Think of birds flying in formation, who encounter an obstacle like a sky scraper and can quickly re-assemble their formation on the other side, guided only by rules that govern their relationship to the bird in front of them.
- Laboratory experiments where scientists remove variables in order to get to a “core” phenomenon may be of little utility, since no physical process occurs in such isolation in nature.
Mentioned in Waldrop’s book is the Santa Fe Institute, a non-profit institute that supports complex systems research. From the Institute’s Web site:
Complex systems research attempts to uncover and understand the deep commonalities that link artificial, human, and natural systems. By their very nature, these problems transcend any particular field, for example, if we understand the fundamental principles of organization, we will gain insight into the functioning of cells in biology, firms in economics, and magnets in physics. This research relies on theories and tools from across the sciences. Part of the rise of the complex systems research agenda can be tied to the use of theoretical computation as a new way to explore such systems.
Legend has it that the founders of Scientific Learning (creators of the Fast ForWord programs), Drs. Michael Merzenich and Paula Tallal, met at the Santa Fe Institute. Merzenich, a neuroscientist, had been doing groundbreaking research into brain plasticity, while Tallal, a neuropsychologist, focused on language acquisition. Their combined work leveraged their expertise in both fields, and created a revolutionary program with a reach that far exceeds that of their individual research.
I don’t know if he would consider himself a complexity theorist, but an essay by Andy Clark, professor of logic and metaphysics in the School of Philosophy, Psychology, and Language Sciences at Edinburgh University, Scotland, evoked the kind of multi-dimensional and multi-disciplinary thinking that inspired the creation of Fast ForWord. Clark’s essay takes a shot at recent brain research (which sometimes appears to consist entirely of fMRI brain scans):
We are all familiar with the colorful “brain blob” pictures that show just where activity (indirectly measured by blood oxygenation level) is concentrated as we attempt to solve different kinds of puzzles: blobs here for thinking of nouns, there for thinking of verbs, over there for solving ethical puzzles of a certain class, and so on, ad blobum.
While supporting this kind of research (“Some of my best friends are neuroscientists and neuro-imagers” says Clark), he does ask an interesting question:
Is it possible that, sometimes at least, some of the activity that enables us to be the thinking, knowing, agents that we are occurs outside the brain?
Clark definitely stretches the concept of “outside the brain.” For example, he points to hand waving (those wild gesticulations many of us make while talking) and studies that show that individuals perform more poorly on mental tasks when their ability to gesticulate is limited, or that “the use of spontaneous gesture increases when we are actively thinking a problem through, rather than simply rehearsing a known solution.” But Clark also points to personal devices, like the iPad, which, he argues “transform and extend the reach of bare biological processing in so many ways.”
Clark’s essay is a great read on this concept of embodied cognition. His conclusion, which sounds like it could come straight from the Santa Fe Institute, is that while the brain itself is incredible, “we — the human beings with versatile bodies living in a complex, increasingly technologized, and heavily self-structured, world — are more fantastic still.” And that understanding the mind is more than just understanding the brain.
Like this:
Like Loading...