Posts Tagged ‘executive function’

Coach helps with ADHD

February 3, 2011

CNN’s Health Minute feature recently highlighted the use of a life coach by a college student with ADHD:

A little different from our approach, which focuses on the foundational cognitive skills that underlie attention (and other learning) challenges. But clearly helpful as a scaffold to keep this student on track.

Memory vs. Memorization

January 14, 2011

A post at Scientific Learning’s New Science of Learning blog highlights the importance of memorization in early schooling: math facts, counting to 100, reciting a poem, or recalling sight words are all examples of memorization tasks that are prevalent in the early grades.

Memorization, it turns out, is not a particularly advanced skill, centered as it is in the hippocampus of the brain, which is, evolutionarily, one of the oldest parts of the brain:

A great deal of learning in the elementary grades involves the hippocampus. Memorization of spelling rules likes “i before e except after c,” math facts, reading of “sight” words that cannot be sounded out, and geographical facts, just to name a few, demand good memorization skills (hippocampus function.). Reading curriculum used before 1970, like those used when the goal was memorization of the “Dolch” sight words, also stressed memorization skills.

Different from memorization is working memory. Working memory is the cognitive function responsible for retaining, manipulating and using information. We use working memory to delegate the things we encounter to the parts of our brain that can take action. Because of this, working memory is critical for staying focused on a task, blocking out distractions, and keeping us updated and aware about what’s going on around us. And, unlike sight word memorization, working memory is critical for grasping a phonics-based approach to reading, which is prevalent in most American curricula.

As young readers develop, working memory takes on more importance. For example, to gain meaning from text, a student’s working memory must be sufficiently developed to remember the beginning of a sentence when she get to the end. Or the first sentence of a paragraph when she gets to the last.

We have previously highlighted a recent study, published in May 2010 in the Journal Reading and Writing (link is to abstract only), which examined the relationship between working memory and reading achievement, hypothesizing that working memory problems can be a root cause of poor reading comprehension. The researchers found working memory measures were “related with children’s word reading and reading comprehension.”

Even if working memory is more important than memorization for developing reading and other learning skills, we can’t completely abandon memorization (as evolutionarily primitive as it may be). For example, in its report “Foundations for Success” (2008), the National Math Panel emphasized the importance of developing automatic recall of addition, subtraction, multiplication and division facts in order to adequately prepare for algebra and beyond.

The allocation of attentional resources

January 7, 2011

The Dana Foundation Web site has a good summary of some of the most recent research into the underlying causes of attention challenges. The article outlines two we are familiar with: working memory and processing rates:

One theory holds that the disorder is primarily a problem with working memory–the ability to hold information in temporary storage long enough to act on it appropriately, while another group of theories centers around how information is processed in time.

“There are lots of psychological tests that show that ADHD kids just don’t get the timing of things quite right,” he says. “This would explain very nicely the impulsivity that is seen in ADHD; where they are not getting the very fine-grained timing of social interactions, for example.” In the classroom, this might manifest as blurting out the answer to a teacher’s query before one is called upon.

But the bulk of the article focuses on ADHD as a lack of allocation of attentional resources in the brain. From Philip Shaw, Ph. D., a scientist who studies ADHD at the National Institute of Mental Health:

“A child who is not staying on task in school could be paying attention to what’s going on outside the classroom. So it’s not that they are not doing something that is attention-demanding; it’s just that their focus is on something other than what they’re meant to be doing.” From that perspective, he says, thinking about ADHD as a problem with the allocation of attentional resources makes sense.

This may seem a logical explanation to parents and teachers. As the article points out:

Parents of children with ADHD, for example, may find it hard to fathom that a child who can spend hours engrossed in a video game has a problem with attention. Teachers may be confounded by a student who is fully engaged in a music lesson but is distracted or disruptive in other classwork.

The article continues with a description of the neural network of attention, with particular focus on the executive attention network, which “enables the individual to decide which things to attend to among competing brain activity.”

As the article points out in summary, “each of these theories offers tantalizing clues about what might be going wrong in the brains of children with ADHD, but they do not answer all of the questions.” And so the search continues…

The effect of mood on insight

January 6, 2011

We’re suckers for a scientific study that involves watching a Robin Williams standup routine…

Consider the task of listening to a conversation in a noisy room or concentrating on a particularly challenging puzzle. Research shows that these tasks are typically associated with activation of the anterior cingulate cortex in the brain. Cells in this area are active when we narrow our attention to concentrate on a difficult task.

But what about insight – that ability to quickly “see” the solution to a puzzle or problem (think “AHA!”), rather than solve it by brute force? Insight requires a widening of associations, rather than a narrowing. For insight to occur, the brain must be open to looser associations and connections. We must, as the scientists would say, be in a “diffuse attentional state.”

So how do we get there? The New York Times summarizes research that indicates mood is a significant factor, and that humor (here’s where the Robin Williams part comes in) is important:

In a just completed study, researchers at Northwestern University found that people were more likely to solve word puzzles with sudden insight when they were amused, having just seen a short comedy routine.

“What we think is happening,” said Mark Beeman, a neuroscientist who conducted the study with Karuna Subramaniam, a graduate student, “is that the humor, this positive mood, is lowering the brain’s threshold for detecting weaker or more remote connections” to solve puzzles.

So next time you’re stuck on a problem, should you just remember the funny joke you heard last week?

The findings fit with dozens of experiments linking positive moods to better creative problem-solving. “The implication is that positive mood engages this broad, diffuse attentional state that is both perceptual and visual,” said Dr. Anderson. “You’re not only thinking more broadly, you’re literally seeing more. The two systems are working in parallel.”

The Times Web site has a pretty cool interactive experiment that you can use to test the effect of mood on your own insight. Check it out here.

Fast ForWord vs. Cogmed

January 5, 2011

Be Amazing Learning offers programs that address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain information they are exposed to, whether in the classroom or in daily life.

Two programs we use most frequently are Fast ForWord and Cogmed. Both programs are based on the concept of neuroplasticity (the lifelong ability of the brain to reorganize neural pathways based on new experiences). They both are computer-based interventions with rigorous daily protocols. And both have very solid foundational research behind them: Fast ForWord research and Cogmed research.

The programs differ in the cognitive skills they develop. Fast ForWord primarily develops auditory processing rates and auditory working memory, with additional training in sequencing and sustained attention. Cogmed primarily develops working memory (auditory and visual-spatial) and attention skills.

At Be Amazing Learning we recommend one or both of the programs for students, depending on the specific learning or behavior challenge they are dealing with. For example, we typically will recommend Cogmed for students struggling with ADD or ADHD. Cogmed addresses the underlying causes of inattentive behavior and improves attention by developing working memory and the ability to focus on multiple tasks and ignore distractions. (Poor auditory processing abilities can also contribute to attention challenges, and in these cases, the Fast ForWord programs may also be an effective intervention.)

Similarly, for students with dyslexia, we typically recommend the Fast ForWord programs, as they attack the auditory processing disorders that cause reading difficulties. And there’s great research on students with dyslexia showing significant improvements in reading and oral language skills on a number of assessments, as well as normalization of activity in critical areas of the brain used for reading after Fast ForWord training.

And in some cases, such as for students struggling with executive function disorder, we might recommend both programs, because they both effectively develop and strengthen the cognitive skills associated with successful executive function, including :

  • Memory – The ability to store information and ideas.
  • Attention – The ability to focus on information and tasks, and ignore distractions.
  • Processing Rate – The rate at which a student is able to accurately perceive and manipulate information.
  • Sequencing – Placing the detail of information in its accustomed order.

The bottom line is that nearly every child can benefit from improved brain processing efficiency.  Wherever your child is, Be Amazing Learning can help move them forward. Our programs have been proven to be effective with many types of learners of all ages, from students with diagnosed learning difficulties, to those simply struggling with homework or reading. With Cogmed and Fast ForWord at our disposal, we can design an effective training program to develop a range of foundational cognitive skills and improve academic potential and performance.

Understanding Attention Deficit Disorder

December 15, 2010

When the experts can’t seem to agree, what’s a parent to do? We posted recently about two apparently contradictory studies about ADHD diagnosis, one that highlighted a significant increase in diagnoses, and another that indicated that as many as a million kids are misdiagnosed. In the NY Times 18 and Under column, Dr. Perri Klass picks up this theme in a recent segment, “Untangling the Myths about Attention Deficit Disorder.”

Dr. Klass describes how in the face of overwhelming evidence to the contrary, the sense remains that ADHD is not a real medical challenge, but is rather an effect of our multitasking, distracted, and overscheduled lives. But, as Klass points out, there are examples in the literature that go back 150 years that describe children who struggled with attention (well before television corrupted their ability to focus). And, as we have also pointed out, recent studies have gone a long way towards establishing the neurological foundation of attention challenges. From Klass column:

  • Imaging studies of people with attention deficits have shown a consistent pattern of below-normal activity in the brain’s frontal lobes, where so-called executive function resides.
  • paper last month [identified] a gene, LPHN3, that is associated both with [ADHD] and with a favorable response to stimulants.

Though studies do point to a genetic root to ADHD, recent research has also identified environmental factors that increase the likelihood of developing attention challenges in children who may have a genetic predisposition towards the disorder. And we know that the active engagement in language with children is critical for developing attention and focus (and that TV and the Internet don’t help). In short, it’s complicated.

Be Amazing Learning Offers Cogmed Programs for Attention Challenges

November 15, 2010

Be Amazing Learning is pleased to announce that we now offer Cogmed Working Memory Training Programs!

Cogmed is a computer-based solution for attention problems caused by poor working memory. Cogmed combines cognitive neuroscience with innovative computer game design and Be Amazing Learning’s close professional support to deliver substantial and lasting benefits. The program consists of 25 daily training sessions, each 30-45 minutes long. Individuals work on the program five days per week for five weeks. Each session consists of a selection of various tasks that target the different aspects of working memory. The difficulty level of each task is adjusted in real time according to a highly sensitive and specific algorithm.

Individuals train on a computer at home, in school, or at work. During training, performance is tracked online and can be viewed by the individual and learning specialists from Be Amazing Learning, who provide feedback and support throughout the training.

Cogmed can be an effective intervention for ADD/ADHD and Executive Function Disorder, as well as for the 1 in 10 typically developing students who have working memory challenges that are holding them back from reaching their full potential.

To find out more or get started, visit our Web site or call (800) 792-4809.

You might also be interested in these recent posts on the importance of working memory for learning:

What’s going on in there? A look inside the teenage brain

November 12, 2010

Research tells us that significant brain development occurs in the first few years of life: the brain reaches 95% of its adult size by age 6.

But recent brain studies show that significant brain development occurs around adolescence. Up to age 12, the brain is adding gray matter (or, to put it more technically, “cortical thickness” increases), at which point, gray matter begins to thin, as the brain prunes connections that developed in childhood, but are no longer deemed necessary.

The PBS series Frontline recently dedicated a show to the teenage brain. The show’s Web site is loaded with content, including the transcript of interviews with several researchers who are looking at the development of the teenage brain. One in particular that caught our eye is with Dr. Jay Giedd, a neuroscientist at the National Institute of Mental Health. Dr. Giedd is focused on how to turn what we’re learning about the brain into practical advice for parents, teachers and teenagers. Now that we have established the concept of brain plasticity, says Giedd, researchers are turning to:

… the forces that can guide this plasticity. How do we optimize the brain’s ability to learn? Are schools doing a good job? Are we as parents doing a good job? And the challenge now is to … bridging the gap between neuroscience and practical advice for parents, teachers and society. We’re not there yet, but we’re closer than ever, and it’s really an exciting time in neuroscience.

At Be Amazing Learning, we regularly work with teenagers who themselves (or whose parents) are looking for solutions for their developing brains. In many cases, these teens have difficulty planning, organizing, and paying attention to and remembering details. Cogmed and Fast ForWord programs can be effective interventions for children and teens with these “executive function” deficits because they develop and strengthen the cognitive skills associated with successful executive function, including working memory, attention and processing rates.

The Frontline series on the teenage brain is fantastic, and there’s a bunch of information available on the show Web site. We’ll be highlighting additional interviews in future posts.


%d bloggers like this: