Posts Tagged ‘decoding’

Studying Japanese yields clues for kids with dyslexia learning English

July 11, 2011

The Wall Street Journal reports on recent research into the use of character-based languages such as the Japanese language kanji.

Learners with dyslexia struggle with the association between letters and sounds in English (a language in which words are comprised of groups of sounds that readers decode). However, character-based languages, where the characters represent complete words or ideas, are mastered through memorization, a skill that many students with dyslexia have mastered to compensate for their decoding struggles.

One study featured in the WSJ article looked at fMRI brain scans of dyslexic students and discovered that they use the same area of the brain to read English as do readers of kanji, a character-based Japanese language. This is different from the area of the brain used by typically developing English readers (and readers of kana, another Japanese language in which characters represent sounds instead of words or ideas).

As the article notes, we don’t cure dyslexia by teaching students in a character-based language. But it does offer some insight into how these kids’ brains are working differently and how teachers might be able to deliver reading-based content more effectively.

We have a link to a fantastic dyslexia study on our Web site. The study, performed at Stanford, is very consistent with the findings discussed in the WSJ article, as it supports the idea that students with dyslexia tend to make reading a more visual task, while typically developing readers integrate auditory processing as well.

 

It’s About Time…

March 29, 2011

Auditory processing describes what happens when the brain recognizes and interprets sounds. Humans hear when energy that we recognize as sound travels through the ear and is changed into electrical information that can be interpreted by the brain. For many students, something is adversely affecting the processing or interpretation of this information. As a result, these students often do not recognize subtle differences between sounds in words, even though the sounds themselves are loud and clear. For example: “Tell me how a chair and a couch are alike” may sound to a child struggling with auditory processing like “Tell me how a hair and a cow are alike.”

These kinds of problems are more likely to occur when the child is in a noisy environment or is listening to complex information.

The Temporal Dynamics of Learning Center (TDLC) at the University of California is one of six Science of Learning Centers funded by the National Science Foundation. Its purpose is “to understand how the element of time and timing is critical for learning, and to apply this understanding to improve educational practice.”

What is the role of timing in learning? From the TDLC Web site:

When you learn new facts, interact with colleagues and teachers, experiment with new gadgets, or engage in countless other learning activities, timing plays a role in the functioning of your neurons, in the communication between and within sensory systems, and in the interactions between different regions of your brain. The success or failure of attempts to communicate using gestures, expressions and verbal language also depend on timing.

In short, timing is critical for learning at every level, from learning the precise temporal patterns of speech sounds, to learning appropriate sequences of movements, to optimal training and instructional schedules for learning, to interpreting the streams of social signals that reinforce learning in the classroom.

Learning depends on the fine-scale structure of the timing between stimuli, response, and reward. The brain is exquisitely sensitive to the temporal structure of sensory experience:

  • at the millisecond time scale in the auditory system;
  • at the second time scale in reinforcement learning;
  • at the minute time scale for action-perception adaptation; and
  • at the day-to-week time scale for consolidation and maturation.

Each level of learning has its own temporal dynamics, and its own timing constraints that affect learning. These levels are not independent, but instead, timing constraints at one level affect learning at another level in a nested way. For example, the dynamics at the cellular level, which is often on the order of milliseconds, implement learning on the whole-brain and behavioral level on much longer time scales, including memories that last a lifetime.

The past decade of neuroscience research demonstrates that the intrinsic temporal dynamics of processes within the brain also reinforce and constrain learning. For example, we have discovered that slow learners tend to have slow “shutter speeds” in terms of how their brains take in and process information. For some poor readers, the underlying problem is the their inability to perceive fast acoustic changes in speech sounds (phonemes) that must be accurately perceived in order to learn letter-sound correspondence rules for reading.

Fortunately, says the TDLC Web site, “Neuroscience-based training regimes that improve this temporal processing ability improve both spoken and written language learning in struggling readers.”

One such training program is the Fast ForWord program, which can be an effective intervention for children with struggling with processing rates because it goes right to the cause of the problem, strengthening the gray matter in the area of the brain responsible for processing auditory information. With Fast ForWord, children are first exposed to sounds that are modified to enhance the minute acoustic differences between similar speech sounds. As children demonstrate proficiency and build new neural pathways, the program automatically reduces the level of modification, until eventually students are challenged to process normal speech sounds.

When their brains are processing speech sounds at peak efficiency, students can better  recognize and discriminate the rapidly changing sounds that are important for discriminating phonemes (the smallest units of speech that distinguish one word from another). As a result, they will more easily:

  • Attend and respond to directions and class discussions
  • Remember questions, directions, and information
  • Learn to read and become a better reader

Babbling Babies

October 14, 2010

On a visit to the pediatrician’s office, parents of newborns can expect to be asked about whether or not their kids are making noise. Recent research, highlighted in the NY Times, suggests that we should be looking for a specific kind of utterance from babies as young as 7 months old: their sounds should have developed into “canonical babble” that includes consonant sounds as well as vowels:

Babies who go on vocalizing without many consonants, making only aaa and ooo sounds, are not practicing the sounds that will lead to word formation, not getting the mouth muscle practice necessary for understandable language to emerge.

“A baby hears all these things and is able to differentiate them before the baby can produce them,” said Carol Stoel-Gammon, an emeritus professor of speech and hearing sciences at the University of Washington. “To make an m, you have to close your mouth and the air has to come out of your nose. It’s not in your brain somewhere – you have to learn it.”

The consonants in babble mean the baby is practicing, shaping different sounds by learning to maneuver the mouth and tongue, and listening to the results.” They get there by 12 months,” Professor Stoel-Gammon continued, “and to me the reason they get there is because they have become aware of the oral motor movements that differentiate between an b and an m.”

What’s the best way for babies to learn? Sorry parents, but it’s on us: “Babies have to hear real language from real people to learn these skills. Television doesn’t do it, and neither do educational videos: recent research suggests that this learning is in part shaped by the quality and context of adult response.”

Children of the Code

September 29, 2010

Reading is such an incredibly complex task that it’s not notable that some students struggle with reading, but rather miraculous that any of us can read at all. The Children of the Code project calls attention to the problems that we face when our children do not learn to read:

We don’t look at reading difficulties through the lens of how to improve the ‘teaching’ of reading, instead through the lens of ‘understanding the challenges involved in learning to read’ –  from the learner’s perspective.

The Children of the Code web site teems with information about reading challenges from experts in the field, including Sally Shawitz, who has used neuro-imaging to understand the basic nature of reading and reading difficulties, and  Paula Tallal, whose foundational research into the link between oral and written language led to the development of Fast ForWord.

At Be Amazing Learning, we are committed to offering individualized, validated solutions for students who are struggling with reading. We are intrigued with depth and breadth of interviews on the Children of the Code site from experts in the fields of neuroscience, cognitive psychology, linguistics, instructional design, literacy, and teaching. If you have an interest in reading difficulties you should take a look at this great site.

Building reading fluency with repeated reading

September 28, 2010

From the Report of the National Reading Panel: Teaching Children to Read:

Fluent readers are able to read orally with speed, accuracy, and proper expression. Fluency is one of several critical factors necessary for reading comprehension. Despite its importance as a component of skilled reading, fluency is often neglected in the classroom. This is unfortunate. If text is read in a laborious and inefficient manner, it will be difficult for the child to remember what has been read and to relate the ideas expressed in the text to his or her background knowledge. Recent research on the efficacy of certain approaches to teaching fluency has led to increased recognition of its importance in the classroom and to changes in instructional practices.

So how do we move students from decoding to reading fluency?

One excellent for developing reading fluency is called repeated reading. Repeated reading allows a student to get practice with expression, speed, and accuracy. Repeated reading allows the student to become comfortable by reading the same text more than once, while synthesizing all of the components of reading fluency.

Be Amazing Learning offers programs to help students practice reading fluency at home in a systematic way. Reading Assistant, from Scientific Learning, uses the strategy of repeated reading to help children and teens become fluent readers.

With Reading Assistant, students preview text and read it silently. Then they listen to a model reading of the text.  Voice recognition software records their multiple readings of the text, calculating rate and words correct per minute. Along the way, students answer guided reading questions that check for passage comprehension. Reading Assistant even helps when the student is unfamiliar with vocabulary.

Be Amazing Learning offers Reading Assistant, typically in concert with the Fast ForWord programs, which build foundational cognitive and language skills and promote brain processing efficiency. Our comprehensive approach can help students gain reading fluency and maximize their potential.

For more information, visit our Web site at beamazinglearning.com or call (800) 792-4809

Getting to the root of reading comprehension struggles

September 24, 2010

We hear from parents a lot that their child does just fine with the mechanics of reading (decoding, spelling, etc.), but struggles with comprehension. Reading comprehension is a difficult task, as it represents the synthesis of so many language and literacy skills, from phonemic awareness to sequencing and working memory. As such, it takes time and a lot of practice to develop reading comprehension skills.

It’s important to note, however, that while kids may be struggling with comprehension, the root cause of their struggle may be more foundational in nature. For example, a child may decode well, but if his brain is working overtime on decoding, there may just not be anything left when it comes time to comprehend what he’s just read. Comprehension requires things like a working memory that’s developed enough to remember the beginning of a sentence when you get to the end. Or the first sentence of a paragraph when you get to the last. But if we can get a child’s brain to process more efficiently, the mechanics of reading become easier, which frees up energy for more complex tasks like comprehension.

The good news is that we can help kids’ brains process more efficiently. Just like we exercise our bodies in the gym or on the track to build physical fitness, we can build brain fitness through targeted exercises that adapt to our abilities.

Be Amazing Learning provides solutions that build brain processing efficiency in critical cognitive skill areas like working memory, processing rates, attention and sequencing. The programs are based on decades of research into brain plasticity, and provide effective, enduring and validated results in just 3-4 months. If comprehension is a struggle for your young reader, visit our Web site at http://www.beamazinglearning.com or call (800) 792-4809 for more information.


%d bloggers like this: