Posts Tagged ‘Cogmed’

Working memory training improves fluid intelligence

June 20, 2011

A common question from parents who are considering a program like Fast ForWord or Cogmed to improve foundational cognitive skills centers around when they might see improvements in their children. While parents frequently observe immediate improvements in skills like attention, comprehension, and general ease of reading, sometimes these gains are not immediately apparent. This is because the programs are developing cognitive skills (such as working memory and processing speed) that are critical for developing learning, attention and reading skills. The programs support the development of more complex learning and reading skills, but don’t directly train them.

A 2008 study from the University of Michigan, which looked at measures of fluid intelligence before and after Cogmed training, supports this idea. The LA Times recently reported on the study:

When the children were tested at the end of the month of training, the Michigan researchers at first found scant differences between the group that got the working-memory training and the general knowledge group. Although those who had received working-memory training were better at holding several items in mind for a short while, on a test of abstract reasoning — fluid intelligence — they were, as a group, no smarter than the control group.

But then the researchers took a closer look and noticed a clear pattern: The children who had improved the most on the memory-training task did indeed perform better on the fluid intelligence test. And three months later, they still did better as a group than both the control group and the children who hadn’t improved.

The University of Michigan study was published in the Proceedings of the National Academy of Sciences. 

Brain Fitness Program for Traumatic Brain Injury

June 17, 2011

Today’s NY Times reports on a planned study of the effectiveness of Posit Science’s Brain Fitness Program on veterans who suffered traumatic brain injuries (TBI) in combat. Posit Science was founded by Dr. Michael Merzenich, whose research into neuroplasticity forms the basis for the Fast ForWord programs.

Dr. Merzenich’s core claim is that brain structure is always changing, based on what people do and what they pay attention to. By doing specific brain exercises that focus and refine attention, he says, you can adjust the underlying structure of your brain. It is well established that this happens when we learn a new skill, like dancing. The question is, Can the same processes be employed to correct for brain damage?

Psychologists and others observing the study range from the cautiously optimistic (quoted in the Times, Gary Abrams, director of neurorehabilitation at U.C.S.F. and head of the T.B.I. support clinic at the San Francisco VA Medical Center, says “It is theoretically reasonable, but will it actually work to help veterans?”) to the skeptical (also cited, in the Times, Dr. P. Murali Doraiswamy, a Duke University psychiatrist, is “not convinced that gains translate into long-term benefits that can be generalized to daily challenges like remembering where the car is parked”).

The study will involve 132 veterans suffering from TBI. They’ll undergo a battery of cognitive tests before the program, and again 3 and 6 months after the program.

The Times article also makes a critical point that we frequently make about the neuroplasticity-based programs (Fast ForWord and Cogmed) that we use with struggling learners: the programs are different because they address the underlying cognitive deficits, rather than compensatory strategies.

Getting the most out of computer-based training programs

May 2, 2011

Computer-based training programs like Fast ForWord and Cogmed can be fantastic interventions for struggling learners because they take advantage of technology to provide precise, adaptive trials. They also provide a game-like format to engage students and allow for comprehensive remote monitoring. In the case of Fast ForWord, they also use complex algorithms to acoustically modify speech sounds to systematically develop processing rates in a way that humans simply cannot (we aren’t capable of slowing down a consonant sound like the <b> in <ba>). We have previously posted about how Fast ForWord uniquely takes advantage of technology to enhance student learning.

A post at Scientific Learning’s New Science of Learning blog addresses some of the challenges related to the efficacy of computer-based training programs. Specifically, it’s important to recognize:

  • What the training program is designed to do (and not to do):

These systems do not do the work of teachers; they are tools to supplement teacher instruction and inform educators’ decisions.  They are not, nor were they ever meant to be, a substitute for highly qualified educators. But when implemented and used correctly, computerized learning systems can and dohelp educators identify and address individual student needs and deliver results.

  • That the programs don’t do all of the work:

Making these solutions work takes work. They are not “plug and play,” nor are they designed to be a one-size-fits-all magic bullet. Computerized solution take careful planning, hours of professional development, and a deep staff and leadership commitment to following implementation protocols.

This second point is critically important, and is something we spend a lot of time refining. Effective computer-based training programs that are based on research into brain plasticity have a common challenge: adherence to a rigorous, intensive training schedule is critical for success. Both programs we work with (Fast ForWord and Cogmed) require a 5-day per week training schedule (daily schedules vary from 30-90 minutes, depending on the program and the child). In our experience, it is how successfully students adhere to this schedule, more than the degree of their learning challenge, that is the single biggest predictor of success with the programs. In short, the programs can achieve amazing results if kids can comply with the rigorous schedule, and they’re pretty mediocre if kids can’t.

So how do we ensure that kids can stick with the schedule?

While we just got finished saying that that the programs don’t do all of the work alone, they do help. Cogmed and Fast ForWord are both presented in an engaging, game-like format that appeals to kids. There are high scores, reward animations, and other supportive features that appear periodically while students are working. Additionally, the adaptive nature of the programs ensures that students are continually challenged at an engaging level: not so hard that they get frustrated, but not so easy that they aren’t learning. These programs aren’t exactly Playstation material, but they are fun and engaging.

As providers of the programs, we can help too. We monitor each child’s progress daily, so if they start to get off track (missed days or missed exercises), we can quickly engage parents in a solution. Comprehensive progress reports also help. For all students, these reports allow parents to identify the portions of the program that are most challenging and intervene with support where necessary. And the reports can engage older students in their own progress, allowing them to track the improvement of their cognitive skills and identify the areas that are proving most challenging. We’ve found that when older students are connected to their own learning in this way, they are more likely to stick with the prescribed training schedule. It’s a bit like seeing results in the mirror when you’re working out at the gym.

Computer-based program relieves ADHD symptoms in children

February 4, 2011

The research validating the effectiveness of Cogmed Working Memory Training at improving attention skills keeps rolling in. Science Daily recently highlighted research by psychologists from Ohio State University, published in the November/December 2010 issue of the Journal of Clinical Child & Adolescent Psychology:

Researchers found significant changes for students who completed the program in areas such as attention, ADHD symptoms, planning and organization, initiating tasks, and working memory.

The study asked parents and teachers to complete observational surveys before and after training, as well as in a 4-month post-training follow up:

Results showed that parents generally rated their children as improving on inattention, overall number of ADHD symptoms, working memory, planning and organization and in initiating tasks. These changes were evident both immediately after treatment and four months later.

One interesting aspect of this study is that unlike previous efficacy studies for Cogmed, this one included students who were on and off medication for their ADHD:

“Most kids with ADHD are on some kind of medication, so it helps to know how this intervention works in these cases,” said study co-author Steven Beck.

In this sample, 60 percent of the students were on medication. The results showed the program was equally effective regardless of whether they were on medication or not.

“Medication for ADHD does not help directly with working memory, and the training program does, so it can be useful,” Beck said.

Solid foundational and efficacy research is a common characteristic of the learning programs we offer. It’s great to see additional research that documents the success of Cogmed with an ever-larger population of struggling learners.

Memory vs. Memorization

January 14, 2011

A post at Scientific Learning’s New Science of Learning blog highlights the importance of memorization in early schooling: math facts, counting to 100, reciting a poem, or recalling sight words are all examples of memorization tasks that are prevalent in the early grades.

Memorization, it turns out, is not a particularly advanced skill, centered as it is in the hippocampus of the brain, which is, evolutionarily, one of the oldest parts of the brain:

A great deal of learning in the elementary grades involves the hippocampus. Memorization of spelling rules likes “i before e except after c,” math facts, reading of “sight” words that cannot be sounded out, and geographical facts, just to name a few, demand good memorization skills (hippocampus function.). Reading curriculum used before 1970, like those used when the goal was memorization of the “Dolch” sight words, also stressed memorization skills.

Different from memorization is working memory. Working memory is the cognitive function responsible for retaining, manipulating and using information. We use working memory to delegate the things we encounter to the parts of our brain that can take action. Because of this, working memory is critical for staying focused on a task, blocking out distractions, and keeping us updated and aware about what’s going on around us. And, unlike sight word memorization, working memory is critical for grasping a phonics-based approach to reading, which is prevalent in most American curricula.

As young readers develop, working memory takes on more importance. For example, to gain meaning from text, a student’s working memory must be sufficiently developed to remember the beginning of a sentence when she get to the end. Or the first sentence of a paragraph when she gets to the last.

We have previously highlighted a recent study, published in May 2010 in the Journal Reading and Writing (link is to abstract only), which examined the relationship between working memory and reading achievement, hypothesizing that working memory problems can be a root cause of poor reading comprehension. The researchers found working memory measures were “related with children’s word reading and reading comprehension.”

Even if working memory is more important than memorization for developing reading and other learning skills, we can’t completely abandon memorization (as evolutionarily primitive as it may be). For example, in its report “Foundations for Success” (2008), the National Math Panel emphasized the importance of developing automatic recall of addition, subtraction, multiplication and division facts in order to adequately prepare for algebra and beyond.

The allocation of attentional resources

January 7, 2011

The Dana Foundation Web site has a good summary of some of the most recent research into the underlying causes of attention challenges. The article outlines two we are familiar with: working memory and processing rates:

One theory holds that the disorder is primarily a problem with working memory–the ability to hold information in temporary storage long enough to act on it appropriately, while another group of theories centers around how information is processed in time.

“There are lots of psychological tests that show that ADHD kids just don’t get the timing of things quite right,” he says. “This would explain very nicely the impulsivity that is seen in ADHD; where they are not getting the very fine-grained timing of social interactions, for example.” In the classroom, this might manifest as blurting out the answer to a teacher’s query before one is called upon.

But the bulk of the article focuses on ADHD as a lack of allocation of attentional resources in the brain. From Philip Shaw, Ph. D., a scientist who studies ADHD at the National Institute of Mental Health:

“A child who is not staying on task in school could be paying attention to what’s going on outside the classroom. So it’s not that they are not doing something that is attention-demanding; it’s just that their focus is on something other than what they’re meant to be doing.” From that perspective, he says, thinking about ADHD as a problem with the allocation of attentional resources makes sense.

This may seem a logical explanation to parents and teachers. As the article points out:

Parents of children with ADHD, for example, may find it hard to fathom that a child who can spend hours engrossed in a video game has a problem with attention. Teachers may be confounded by a student who is fully engaged in a music lesson but is distracted or disruptive in other classwork.

The article continues with a description of the neural network of attention, with particular focus on the executive attention network, which “enables the individual to decide which things to attend to among competing brain activity.”

As the article points out in summary, “each of these theories offers tantalizing clues about what might be going wrong in the brains of children with ADHD, but they do not answer all of the questions.” And so the search continues…

Fast ForWord vs. Cogmed

January 5, 2011

Be Amazing Learning offers programs that address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain information they are exposed to, whether in the classroom or in daily life.

Two programs we use most frequently are Fast ForWord and Cogmed. Both programs are based on the concept of neuroplasticity (the lifelong ability of the brain to reorganize neural pathways based on new experiences). They both are computer-based interventions with rigorous daily protocols. And both have very solid foundational research behind them: Fast ForWord research and Cogmed research.

The programs differ in the cognitive skills they develop. Fast ForWord primarily develops auditory processing rates and auditory working memory, with additional training in sequencing and sustained attention. Cogmed primarily develops working memory (auditory and visual-spatial) and attention skills.

At Be Amazing Learning we recommend one or both of the programs for students, depending on the specific learning or behavior challenge they are dealing with. For example, we typically will recommend Cogmed for students struggling with ADD or ADHD. Cogmed addresses the underlying causes of inattentive behavior and improves attention by developing working memory and the ability to focus on multiple tasks and ignore distractions. (Poor auditory processing abilities can also contribute to attention challenges, and in these cases, the Fast ForWord programs may also be an effective intervention.)

Similarly, for students with dyslexia, we typically recommend the Fast ForWord programs, as they attack the auditory processing disorders that cause reading difficulties. And there’s great research on students with dyslexia showing significant improvements in reading and oral language skills on a number of assessments, as well as normalization of activity in critical areas of the brain used for reading after Fast ForWord training.

And in some cases, such as for students struggling with executive function disorder, we might recommend both programs, because they both effectively develop and strengthen the cognitive skills associated with successful executive function, including :

  • Memory – The ability to store information and ideas.
  • Attention – The ability to focus on information and tasks, and ignore distractions.
  • Processing Rate – The rate at which a student is able to accurately perceive and manipulate information.
  • Sequencing – Placing the detail of information in its accustomed order.

The bottom line is that nearly every child can benefit from improved brain processing efficiency.  Wherever your child is, Be Amazing Learning can help move them forward. Our programs have been proven to be effective with many types of learners of all ages, from students with diagnosed learning difficulties, to those simply struggling with homework or reading. With Cogmed and Fast ForWord at our disposal, we can design an effective training program to develop a range of foundational cognitive skills and improve academic potential and performance.

Traditional Tutoring vs. Cognitive Training

January 4, 2011

Traditional tutoring offers additional help in a particular subject area or with a particular skill. It can be an effective addition to content delivered in the classroom, especially because it can frequently be tailored to a child’s individual needs.

Be Amazing Learning is different because the programs we offer (Fast ForWord and Cogmed) address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain content they are exposed to, whether in the classroom or with a tutor.

Additionally, training cognitive skills with Be Amazing Learning is a one-time shot: kids build their brain fitness with the programs, then move on to better academic performance. Once children have cognitive training, they stay “fit” by using their new cognitive skills. Studies have shown that the improvements in cognitive skills we can help your child achieve are both substantial and enduring. For example, a 4-year longitudinal study conducted at Dallas Independent School District that showed that students who trained with Fast ForWord programs achieved significant gains in reading, and maintained those gains relative to their peers.

For more information about how cognitive training can help your child, visit our Web site or call (800) 792-4809.

Getting to the truth on ADHD diagnosis

December 2, 2010

We just came across two studies related to the diagnosis of Attention Deficit/Hyperactivity Disorder (ADHD) that could flat-out baffle a parent struggling to get to the root of their child’s struggles:

  • The first, a study by the Centers for Disease Control and Prevention, indicates that as many 10% of American children may have ADHD. Additionally, this represents a 22% increase in the occurrence of ADHD between 2003 and 2007 (the last year for which data are available). Researchers site increased awareness and better screening as possible causes for the increase.
  • The second study, by Michigan State Economist Todd Elder, (to be published in an upcoming issue of the Journal of Health Economics), indicates that as many as 1 million students in the United States are mis-diagnosed with ADHD. According to Elder, many of the students who exhibit poor behavior and inattention are simply younger than their classmates. The inattentive behavior, says Elder, may simply “be because he’s 5 and the other kids are 6. There’s a big difference between a 5-year-old and a 6-year-old, and teachers and medical practitioners need to take that into account when evaluating whether children have ADHD.”

ADHD diagnosis is challenging, because it is generally based on a clinical evaluation of reported behavior. We’ve previously posted on recent efforts to develop a clinical test for attention challenges, and there is research as well that indicates that ADHD may be a genetic disorder.

It’s important to accurately diagnose attention or other learning challenges that may be holding a student back from reaching his potential. However, many attention and other learning challenges, whether or not they reach the level of a diagnosed disorder, can be addressed by developing the foundational cognitive skills that support attentive behavior and learning. For example, working memory and processing speed are critical cognitive skills that may be less than fully developed in students with attention challenges (even if those challenges don’t rise to the level of a formal ADHD diagnosis). Scientifically-validated programs exist to improve these critical skills in all learners, whether typically developing or struggling with a diagnosed learning difficulty.

Working memory and reading comprehension

November 29, 2010

Reading comprehension is a complex task requiring the synthesis of several cognitive functions:

  • Sequencing is critical for making meaning from text (the sentence “Man bites dog” has a very different meaning from “Dog bites man”).
  • Processing speed must be developed for the brain must be able to successfully process visual and auditory stimuli associated with reading
  • Working memory must be sufficiently developed to remember the beginning of a sentence when you get to the end. Or the first sentence of a paragraph when you get to the last.

Several studies have looked at the impact of Fast ForWord, a training program designed to improve these critical cognitive skills. One that we like a lot looked at reading comprehension improvements in middle and high school students in the Dallas Independent School District. The students made a 22-month gain in age-equivalent reading scores after just 6 months of training.

A recent study, published in May 2010 in the Journal Reading and Writing (link is to abstract only) examined the impact of Cogmed Working Memory Training on reading comprehension abilities. The study also examined the relationship between working memory and reading achievement, hypothesizing that working memory problems can be a root cause of poor reading comprehension. The researchers found Cogmed training to significantly improve reading comprehension development, and working memory measures were shown to “be related with children’s word reading and reading comprehension.”

Having a brain that can efficiently process the visual and auditory inputs that take place during reading is critical for successful comprehension. Students whose brains are not processing efficiently can struggle with reading comprehension. But research shows that programs, such as Fast ForWord and Cogmed, that build efficiency in skills such as processing rates and working memory can have a positive impact on comprehension abilities.

%d bloggers like this: