Posts Tagged ‘brain fitness’

New research on the neural system of language

December 7, 2011

Neuroscientists have long known that particular areas of the brain are responsible for the comprehension and production of language. But new research points to the criticality of pathways between these areas for various components of language.

From a Science Daily article summarizing the research:

Two brain areas called Broca’s region and Wernicke’s region serve as the main computing hubs underlying language processing, with dense bundles of nerve fibers linking the two, much like fiber optic cables connecting computer servers. But while it was known that Broca’s and Wernicke’s region are connected by upper and a lower white matter pathways, most research had focused on the nerve cells clustered inside the two language-processing regions themselves.

MRI image shows Brocca's (yellow) and Wernicke's (purple) regions, connected by critical neural pathways. (Image credit: Stephen Wilson, Science Daily)

University of Arizona Professor of Speech and Hearing Stephen Wilson was one of the lead researchers:

If you have damage to the lower pathway, you have damage to the lexicon and semantics. You forget the name of things, you forget the meaning of words. But surprisingly, you’re extremely good at constructing sentences.

With damage to the upper pathway, the opposite is true; patients name things quite well, they know the words, they can understand them, they can remember them, but when it comes to figuring out the meaning of a complex sentence, they are going to fail.

Professor Wilson collaborated on the research with colleagues from the University of California at San Francisco and the Scientific Institute and University Hospital San Raffaele in Milan, Italy. The research was published in the journal Neuron.

Developing spatial vocabulary in infants

November 3, 2011

In a recent collection of essays, “Manhood for Amateurs,” one of my favorite writers, Michael Chabon, laments a development in the world of Legos, namely that they now come almost exclusively in kits with detailed instructions, designed to be assembled in a particular way to create a specific space ship or tractor. Gone, says Chabon, are the days of starting with a bin full of Legos of all sizes, shapes and colors, and creating, well, something creative.

Fortunately, some new research indicates that all might not be lost. In fact, “guided play,” in which participants are given blocks along with graphic instructions for creating a particular structure, generates higher levels of “spatial talk” than free play. The research was performed at Temple University’s Infant Lab, and recently highlighted by Science Daily:

The researchers found that when playing with blocks under interactive conditions, children hear the kind of language that helps them think about space, such as “over,” “around” and “through.”

“When parents use spatial language, they draw attention to spatial concepts,” said Nora Newcombe, co-director of Temple’s Infant Lab. “The development of a spatial vocabulary is critical for developing spatial ability and awareness.”

Spatial skills, says the Science Daily article, “are important for success in the STEM (science, technology, engineering and math) disciplines, but they are also involved in many everyday tasks, such as packing the trunk of a car or assembling a crib. They are a central component of intellect and, as those who struggle finding their way around a new city can attest, they show marked individual differences.”

So Chabon’s laments aside, it’s OK, and maybe even good, to pick up that Star Wars Lego kit and build the Death Star just like the picture on the box.

For other research about the importance of manipulative play, check out:

More evidence that exercise keeps the brain fit

July 27, 2011

The NY Times picked up on new research that offers good news for older individuals hoping to stave off mental decline. Here at Be Amazing Learning, we work more frequently with children and young adults than seniors, but the same concepts of neuroplasticity are at play early and late in life.

The multi-year study, performed at the University of Waterloo in Ontario and published in the Archives of Internal Medicine, showed that subjects who engaged in even modest exercise (walking around the block, gardening, cleaning) maintained cognitive function when compared to sedentary subjects.

That exercise can help the brain is not a particularly new concept (we have previously posted on the topic), but what the study showed (according to Professor Laura Middleton, the study’s lead author) that “vigorous exercise isn’t necessary to protect your mind. I think that’s exciting. It might inspire people who would be intimidated about the idea of quote-unquote exercising to just get up and move.”

Another study identified in the Times article indicates that even lifting weights (as opposed to aerobic exercise) can be an effective intervention. That study, published in Neurobiology of Aging, indicated that “light-duty weight training changes how well older women think and how blood flows within their brains.”

So the latest research indicates that exercise of any kind and any intensity can help stave off mental decline. So let’s get out there!

Working memory training improves fluid intelligence

June 20, 2011

A common question from parents who are considering a program like Fast ForWord or Cogmed to improve foundational cognitive skills centers around when they might see improvements in their children. While parents frequently observe immediate improvements in skills like attention, comprehension, and general ease of reading, sometimes these gains are not immediately apparent. This is because the programs are developing cognitive skills (such as working memory and processing speed) that are critical for developing learning, attention and reading skills. The programs support the development of more complex learning and reading skills, but don’t directly train them.

A 2008 study from the University of Michigan, which looked at measures of fluid intelligence before and after Cogmed training, supports this idea. The LA Times recently reported on the study:

When the children were tested at the end of the month of training, the Michigan researchers at first found scant differences between the group that got the working-memory training and the general knowledge group. Although those who had received working-memory training were better at holding several items in mind for a short while, on a test of abstract reasoning — fluid intelligence — they were, as a group, no smarter than the control group.

But then the researchers took a closer look and noticed a clear pattern: The children who had improved the most on the memory-training task did indeed perform better on the fluid intelligence test. And three months later, they still did better as a group than both the control group and the children who hadn’t improved.

The University of Michigan study was published in the Proceedings of the National Academy of Sciences. 

Be Amazing Learning client featured on ABC News

June 17, 2011

Be Amazing Learning client Sami Merit was featured on San Francisco Bay Area ABC 7 News, as part of a story that looked at Fast ForWord use at home and at an Oakland elementary school.

Hooray Sami!

Brain Fitness Program for Traumatic Brain Injury

June 17, 2011

Today’s NY Times reports on a planned study of the effectiveness of Posit Science’s Brain Fitness Program on veterans who suffered traumatic brain injuries (TBI) in combat. Posit Science was founded by Dr. Michael Merzenich, whose research into neuroplasticity forms the basis for the Fast ForWord programs.

Dr. Merzenich’s core claim is that brain structure is always changing, based on what people do and what they pay attention to. By doing specific brain exercises that focus and refine attention, he says, you can adjust the underlying structure of your brain. It is well established that this happens when we learn a new skill, like dancing. The question is, Can the same processes be employed to correct for brain damage?

Psychologists and others observing the study range from the cautiously optimistic (quoted in the Times, Gary Abrams, director of neurorehabilitation at U.C.S.F. and head of the T.B.I. support clinic at the San Francisco VA Medical Center, says “It is theoretically reasonable, but will it actually work to help veterans?”) to the skeptical (also cited, in the Times, Dr. P. Murali Doraiswamy, a Duke University psychiatrist, is “not convinced that gains translate into long-term benefits that can be generalized to daily challenges like remembering where the car is parked”).

The study will involve 132 veterans suffering from TBI. They’ll undergo a battery of cognitive tests before the program, and again 3 and 6 months after the program.

The Times article also makes a critical point that we frequently make about the neuroplasticity-based programs (Fast ForWord and Cogmed) that we use with struggling learners: the programs are different because they address the underlying cognitive deficits, rather than compensatory strategies.

Getting the most out of computer-based training programs

May 2, 2011

Computer-based training programs like Fast ForWord and Cogmed can be fantastic interventions for struggling learners because they take advantage of technology to provide precise, adaptive trials. They also provide a game-like format to engage students and allow for comprehensive remote monitoring. In the case of Fast ForWord, they also use complex algorithms to acoustically modify speech sounds to systematically develop processing rates in a way that humans simply cannot (we aren’t capable of slowing down a consonant sound like the <b> in <ba>). We have previously posted about how Fast ForWord uniquely takes advantage of technology to enhance student learning.

A post at Scientific Learning’s New Science of Learning blog addresses some of the challenges related to the efficacy of computer-based training programs. Specifically, it’s important to recognize:

  • What the training program is designed to do (and not to do):

These systems do not do the work of teachers; they are tools to supplement teacher instruction and inform educators’ decisions.  They are not, nor were they ever meant to be, a substitute for highly qualified educators. But when implemented and used correctly, computerized learning systems can and dohelp educators identify and address individual student needs and deliver results.

  • That the programs don’t do all of the work:

Making these solutions work takes work. They are not “plug and play,” nor are they designed to be a one-size-fits-all magic bullet. Computerized solution take careful planning, hours of professional development, and a deep staff and leadership commitment to following implementation protocols.

This second point is critically important, and is something we spend a lot of time refining. Effective computer-based training programs that are based on research into brain plasticity have a common challenge: adherence to a rigorous, intensive training schedule is critical for success. Both programs we work with (Fast ForWord and Cogmed) require a 5-day per week training schedule (daily schedules vary from 30-90 minutes, depending on the program and the child). In our experience, it is how successfully students adhere to this schedule, more than the degree of their learning challenge, that is the single biggest predictor of success with the programs. In short, the programs can achieve amazing results if kids can comply with the rigorous schedule, and they’re pretty mediocre if kids can’t.

So how do we ensure that kids can stick with the schedule?

While we just got finished saying that that the programs don’t do all of the work alone, they do help. Cogmed and Fast ForWord are both presented in an engaging, game-like format that appeals to kids. There are high scores, reward animations, and other supportive features that appear periodically while students are working. Additionally, the adaptive nature of the programs ensures that students are continually challenged at an engaging level: not so hard that they get frustrated, but not so easy that they aren’t learning. These programs aren’t exactly Playstation material, but they are fun and engaging.

As providers of the programs, we can help too. We monitor each child’s progress daily, so if they start to get off track (missed days or missed exercises), we can quickly engage parents in a solution. Comprehensive progress reports also help. For all students, these reports allow parents to identify the portions of the program that are most challenging and intervene with support where necessary. And the reports can engage older students in their own progress, allowing them to track the improvement of their cognitive skills and identify the areas that are proving most challenging. We’ve found that when older students are connected to their own learning in this way, they are more likely to stick with the prescribed training schedule. It’s a bit like seeing results in the mirror when you’re working out at the gym.

The impact of sleep on sustained attention

April 18, 2011

This weekend’s NY Times Magazine is all about health – everything from the toxicity of sugar to the question of whether cell phones cause cancer. One article that caught our eye (at least after a cup of morning coffee) asks “How little sleep can you get away with?

David Dinges, the head of the Sleep and Chronobiology Laboratory at the Hospital at the University of Pennsylvania has asked just this question, and the answer is: you should really try to get 8 hours. Dinges’ 2003 study assigned dozens of subjects to three different groups: some slept four hours, others six hours and others, for the lucky control group, eight hours — for two weeks in the lab. The study used a measure called psychomotor vigilance task, or PVT. PVT is a “tedious but simple if you’ve been sleeping well. It measures the sustained attention that is vital for pilots, truck drivers, astronauts. Attention is also key for focusing during long meetings; for reading a paragraph just once, instead of five times; for driving a car. It takes the equivalent of only a two-second lapse for a driver to veer into oncoming traffic.”

The results?

Those who had eight hours of sleep hardly had any attention lapses and no cognitive declines over the 14 days of the study. What was interesting was that those in the four- and six-hour groups had P.V.T. results that declined steadily with almost each passing day. Though the four-hour subjects performed far worse, the six-hour group also consistently fell off-task. By the sixth day, 25 percent of the six-hour group was falling asleep at the computer. And at the end of the study, they were lapsing fives times as much as they did the first day.

The six-hour subjects fared no better — steadily declining over the two weeks — on a test of working memory in which they had to remember numbers and symbols and substitute one for the other. The same was true for an addition-subtraction task that measures speed and accuracy. All told, by the end of two weeks, the six-hour sleepers were as impaired as those who, in another Dinges study, had been sleep-deprived for 24 hours straight — the cognitive equivalent of being legally drunk.

These results are particularly interesting in light of a study recently published in the journal SLEEP that indicated that loss of an hour of sleep per night among children with ADHD had a significant impact on their ability to remain focused and sustain attention From a Science Daily article summarizing the research: “The study suggests that even moderate reductions in sleep duration can affect neurobehavioral functioning, which may have a negative impact on the academic performance of children with ADHD.”

Results of multivariate analyses of variance show that after mean nightly sleep loss of about 55 minutes for six nights, the performance of children with ADHD on a neurobehavioral test deteriorated from the subclinical range to the clinical range of inattention on four of six measures, including omission errors (missed targets) and reaction time. Children with ADHD generally committed more omission errors than controls. Although the performance of children in the control group also deteriorated after mean nightly sleep loss of 34 minutes for six nights, it did not reach a clinical level of inattention on any of the six measures.

Reut Gruber, PhD, assistant professor in the department of psychiatry at McGill University and director of the Attention, Behavior and Sleep Laboratory at Douglas Mental Health University Institute in Montreal, Québec, quoted in the Science Daily article, has advice for parents:

“The reduction in sleep duration in our study was modest and similar to the sleep deprivation that might occur in daily life,” Gruber said. “Thus, even small changes in dinner time, computer time, or staying up to do homework could result in poorer neurobehavioral functioning the following day and affect sustained attention and vigilance, which are essential for optimal academic performance.”

“An important implication of the present study is that investments in programs that aim to decrease sleep deprivation may lead to improvements in neurobehavioral functioning and academic performance,” she said.

I don’t know about you, but we’re going to go take a nap.

The Thirsty Linguist reviews Oliver Sacks’ latest book “The Mind’s Eye”

March 31, 2011

Doctor and author Oliver Sacks is known for bringing neuroscience to the masses. In The Man Who Mistook His Wife for a Hat and Awakenings (which was made into a movie starring Robert DeNiro and Robin Williams), Sacks explores neurological disorders with the writing skills of a novelist.

Our friend, the Thirsty Linguist, reviews Sacks’ latest book, The Mind’s Eye, which explores the human experience of vision:

As in some of his previous books, Sacks presents case histories of individuals suffering from neurological injury or disease, and uses these histories as a means to probe the capacities of the mind. Lilian Kallir, for example, is a pianist who loses the ability to read, even though the rest of her vision remains intact and, puzzingly, she can still write. Sacks follows Lilian’s story over a period of three years, describing the coping strategies she develops, such as color-coding items in her home, as well as the new talents that arise unexpectedly with her condition, such as the ability to re-arrange musical pieces in her mind without consulting a score. Howard Engel, featured in another case history, is a writer who also loses the ability to read, but he approaches his situation differently: he rejects audiobooks, refuses to give up the world of text, and painstakingly learns his ABCs all over again.

Lilian’s and Howard’s cases both suggest that the brain has a specific location dedicated to reading. But it is not at all obvious why this should be so. Unlike spoken language, which evolved over hundreds of thousands of years, written language is a relatively recent cultural invention that offered no survival advantage to humans in primitive societies. Plasticity offers a potential answer to this conundrum: we can and do use structures in the brain for purposes very different from those for which they evolved. Sacks casts a wide net to gather evidence for this idea. He describes case histories of nineteenth century neurologists, who treated patients with symptoms similar to Lilian’s and Howard’s. He cites evolutionary thinkers from Charles Darwin and Alfred Russel Wallace to Stephen Jay Gould and Elisabeth Vrba, tracing the history of the notion of “exaptation,” a biological adaptation which gets put to a new use. He presents key results from imaging studies which demonstrate that different areas of the brain are active during reading versus listening. And he summarizes a computational study of over 100 writing systems which shows that, despite their diversity, these systems share basic visual signatures which resemble those found in natural settings.

The Mind’s Eye thus offers narrative science writing of the most satisfying kind. We delight in pedagogical moments because Sacks weaves them seamlessly into the case histories. We get drawn into the topics of evolution, brain imaging, and computation because we want to follow people like Lilian and Howard. “Make characters the matter of your narrative,” advises James Shreeve in A Field Guide for Science Writers, “and let the science spill from their relations.” Sacks does precisely that.

If Sacks’ work intrigues you, you might also be interested in:

It’s About Time…

March 29, 2011

Auditory processing describes what happens when the brain recognizes and interprets sounds. Humans hear when energy that we recognize as sound travels through the ear and is changed into electrical information that can be interpreted by the brain. For many students, something is adversely affecting the processing or interpretation of this information. As a result, these students often do not recognize subtle differences between sounds in words, even though the sounds themselves are loud and clear. For example: “Tell me how a chair and a couch are alike” may sound to a child struggling with auditory processing like “Tell me how a hair and a cow are alike.”

These kinds of problems are more likely to occur when the child is in a noisy environment or is listening to complex information.

The Temporal Dynamics of Learning Center (TDLC) at the University of California is one of six Science of Learning Centers funded by the National Science Foundation. Its purpose is “to understand how the element of time and timing is critical for learning, and to apply this understanding to improve educational practice.”

What is the role of timing in learning? From the TDLC Web site:

When you learn new facts, interact with colleagues and teachers, experiment with new gadgets, or engage in countless other learning activities, timing plays a role in the functioning of your neurons, in the communication between and within sensory systems, and in the interactions between different regions of your brain. The success or failure of attempts to communicate using gestures, expressions and verbal language also depend on timing.

In short, timing is critical for learning at every level, from learning the precise temporal patterns of speech sounds, to learning appropriate sequences of movements, to optimal training and instructional schedules for learning, to interpreting the streams of social signals that reinforce learning in the classroom.

Learning depends on the fine-scale structure of the timing between stimuli, response, and reward. The brain is exquisitely sensitive to the temporal structure of sensory experience:

  • at the millisecond time scale in the auditory system;
  • at the second time scale in reinforcement learning;
  • at the minute time scale for action-perception adaptation; and
  • at the day-to-week time scale for consolidation and maturation.

Each level of learning has its own temporal dynamics, and its own timing constraints that affect learning. These levels are not independent, but instead, timing constraints at one level affect learning at another level in a nested way. For example, the dynamics at the cellular level, which is often on the order of milliseconds, implement learning on the whole-brain and behavioral level on much longer time scales, including memories that last a lifetime.

The past decade of neuroscience research demonstrates that the intrinsic temporal dynamics of processes within the brain also reinforce and constrain learning. For example, we have discovered that slow learners tend to have slow “shutter speeds” in terms of how their brains take in and process information. For some poor readers, the underlying problem is the their inability to perceive fast acoustic changes in speech sounds (phonemes) that must be accurately perceived in order to learn letter-sound correspondence rules for reading.

Fortunately, says the TDLC Web site, “Neuroscience-based training regimes that improve this temporal processing ability improve both spoken and written language learning in struggling readers.”

One such training program is the Fast ForWord program, which can be an effective intervention for children with struggling with processing rates because it goes right to the cause of the problem, strengthening the gray matter in the area of the brain responsible for processing auditory information. With Fast ForWord, children are first exposed to sounds that are modified to enhance the minute acoustic differences between similar speech sounds. As children demonstrate proficiency and build new neural pathways, the program automatically reduces the level of modification, until eventually students are challenged to process normal speech sounds.

When their brains are processing speech sounds at peak efficiency, students can better  recognize and discriminate the rapidly changing sounds that are important for discriminating phonemes (the smallest units of speech that distinguish one word from another). As a result, they will more easily:

  • Attend and respond to directions and class discussions
  • Remember questions, directions, and information
  • Learn to read and become a better reader

%d bloggers like this: