Posts Tagged ‘auditory processing’

New research on the neural system of language

December 7, 2011

Neuroscientists have long known that particular areas of the brain are responsible for the comprehension and production of language. But new research points to the criticality of pathways between these areas for various components of language.

From a Science Daily article summarizing the research:

Two brain areas called Broca’s region and Wernicke’s region serve as the main computing hubs underlying language processing, with dense bundles of nerve fibers linking the two, much like fiber optic cables connecting computer servers. But while it was known that Broca’s and Wernicke’s region are connected by upper and a lower white matter pathways, most research had focused on the nerve cells clustered inside the two language-processing regions themselves.

MRI image shows Brocca's (yellow) and Wernicke's (purple) regions, connected by critical neural pathways. (Image credit: Stephen Wilson, Science Daily)

University of Arizona Professor of Speech and Hearing Stephen Wilson was one of the lead researchers:

If you have damage to the lower pathway, you have damage to the lexicon and semantics. You forget the name of things, you forget the meaning of words. But surprisingly, you’re extremely good at constructing sentences.

With damage to the upper pathway, the opposite is true; patients name things quite well, they know the words, they can understand them, they can remember them, but when it comes to figuring out the meaning of a complex sentence, they are going to fail.

Professor Wilson collaborated on the research with colleagues from the University of California at San Francisco and the Scientific Institute and University Hospital San Raffaele in Milan, Italy. The research was published in the journal Neuron.

Studying Japanese yields clues for kids with dyslexia learning English

July 11, 2011

The Wall Street Journal reports on recent research into the use of character-based languages such as the Japanese language kanji.

Learners with dyslexia struggle with the association between letters and sounds in English (a language in which words are comprised of groups of sounds that readers decode). However, character-based languages, where the characters represent complete words or ideas, are mastered through memorization, a skill that many students with dyslexia have mastered to compensate for their decoding struggles.

One study featured in the WSJ article looked at fMRI brain scans of dyslexic students and discovered that they use the same area of the brain to read English as do readers of kanji, a character-based Japanese language. This is different from the area of the brain used by typically developing English readers (and readers of kana, another Japanese language in which characters represent sounds instead of words or ideas).

As the article notes, we don’t cure dyslexia by teaching students in a character-based language. But it does offer some insight into how these kids’ brains are working differently and how teachers might be able to deliver reading-based content more effectively.

We have a link to a fantastic dyslexia study on our Web site. The study, performed at Stanford, is very consistent with the findings discussed in the WSJ article, as it supports the idea that students with dyslexia tend to make reading a more visual task, while typically developing readers integrate auditory processing as well.

 

Be Amazing Learning client featured on ABC News

June 17, 2011

Be Amazing Learning client Sami Merit was featured on San Francisco Bay Area ABC 7 News, as part of a story that looked at Fast ForWord use at home and at an Oakland elementary school.

Hooray Sami!

http://abclocal.go.com/kgo/story?section=news/health&id=8195812

Brain Fitness Program for Traumatic Brain Injury

June 17, 2011

Today’s NY Times reports on a planned study of the effectiveness of Posit Science’s Brain Fitness Program on veterans who suffered traumatic brain injuries (TBI) in combat. Posit Science was founded by Dr. Michael Merzenich, whose research into neuroplasticity forms the basis for the Fast ForWord programs.

Dr. Merzenich’s core claim is that brain structure is always changing, based on what people do and what they pay attention to. By doing specific brain exercises that focus and refine attention, he says, you can adjust the underlying structure of your brain. It is well established that this happens when we learn a new skill, like dancing. The question is, Can the same processes be employed to correct for brain damage?

Psychologists and others observing the study range from the cautiously optimistic (quoted in the Times, Gary Abrams, director of neurorehabilitation at U.C.S.F. and head of the T.B.I. support clinic at the San Francisco VA Medical Center, says “It is theoretically reasonable, but will it actually work to help veterans?”) to the skeptical (also cited, in the Times, Dr. P. Murali Doraiswamy, a Duke University psychiatrist, is “not convinced that gains translate into long-term benefits that can be generalized to daily challenges like remembering where the car is parked”).

The study will involve 132 veterans suffering from TBI. They’ll undergo a battery of cognitive tests before the program, and again 3 and 6 months after the program.

The Times article also makes a critical point that we frequently make about the neuroplasticity-based programs (Fast ForWord and Cogmed) that we use with struggling learners: the programs are different because they address the underlying cognitive deficits, rather than compensatory strategies.

It’s About Time…

March 29, 2011

Auditory processing describes what happens when the brain recognizes and interprets sounds. Humans hear when energy that we recognize as sound travels through the ear and is changed into electrical information that can be interpreted by the brain. For many students, something is adversely affecting the processing or interpretation of this information. As a result, these students often do not recognize subtle differences between sounds in words, even though the sounds themselves are loud and clear. For example: “Tell me how a chair and a couch are alike” may sound to a child struggling with auditory processing like “Tell me how a hair and a cow are alike.”

These kinds of problems are more likely to occur when the child is in a noisy environment or is listening to complex information.

The Temporal Dynamics of Learning Center (TDLC) at the University of California is one of six Science of Learning Centers funded by the National Science Foundation. Its purpose is “to understand how the element of time and timing is critical for learning, and to apply this understanding to improve educational practice.”

What is the role of timing in learning? From the TDLC Web site:

When you learn new facts, interact with colleagues and teachers, experiment with new gadgets, or engage in countless other learning activities, timing plays a role in the functioning of your neurons, in the communication between and within sensory systems, and in the interactions between different regions of your brain. The success or failure of attempts to communicate using gestures, expressions and verbal language also depend on timing.

In short, timing is critical for learning at every level, from learning the precise temporal patterns of speech sounds, to learning appropriate sequences of movements, to optimal training and instructional schedules for learning, to interpreting the streams of social signals that reinforce learning in the classroom.

Learning depends on the fine-scale structure of the timing between stimuli, response, and reward. The brain is exquisitely sensitive to the temporal structure of sensory experience:

  • at the millisecond time scale in the auditory system;
  • at the second time scale in reinforcement learning;
  • at the minute time scale for action-perception adaptation; and
  • at the day-to-week time scale for consolidation and maturation.

Each level of learning has its own temporal dynamics, and its own timing constraints that affect learning. These levels are not independent, but instead, timing constraints at one level affect learning at another level in a nested way. For example, the dynamics at the cellular level, which is often on the order of milliseconds, implement learning on the whole-brain and behavioral level on much longer time scales, including memories that last a lifetime.

The past decade of neuroscience research demonstrates that the intrinsic temporal dynamics of processes within the brain also reinforce and constrain learning. For example, we have discovered that slow learners tend to have slow “shutter speeds” in terms of how their brains take in and process information. For some poor readers, the underlying problem is the their inability to perceive fast acoustic changes in speech sounds (phonemes) that must be accurately perceived in order to learn letter-sound correspondence rules for reading.

Fortunately, says the TDLC Web site, “Neuroscience-based training regimes that improve this temporal processing ability improve both spoken and written language learning in struggling readers.”

One such training program is the Fast ForWord program, which can be an effective intervention for children with struggling with processing rates because it goes right to the cause of the problem, strengthening the gray matter in the area of the brain responsible for processing auditory information. With Fast ForWord, children are first exposed to sounds that are modified to enhance the minute acoustic differences between similar speech sounds. As children demonstrate proficiency and build new neural pathways, the program automatically reduces the level of modification, until eventually students are challenged to process normal speech sounds.

When their brains are processing speech sounds at peak efficiency, students can better  recognize and discriminate the rapidly changing sounds that are important for discriminating phonemes (the smallest units of speech that distinguish one word from another). As a result, they will more easily:

  • Attend and respond to directions and class discussions
  • Remember questions, directions, and information
  • Learn to read and become a better reader

TED Talk on the Linguistic Genius of Babies

February 17, 2011

In this great 10-minute lecture, Patricia Kuhl, co-director of the Institute for Brain and Learning Sciences at the University of Washington, shares her findings about how babies learn one language over another — by listening to the humans around them and “taking statistics” on the sounds they need to know.

Experiments and brain imaging show how 6-month-old babies use sophisticated reasoning to understand their world. Dr. Kuhl’s work has played a major role in demonstrating how early exposure to language alters the brain. It has implications for critical periods in development, for bilingual education and reading readiness, for developmental disabilities involving language, and for research on computer understanding of speech.

More research on the importance of auditory processing abilities for reading

February 7, 2011

We were interested to see new research from Belgium that looks at the link between early auditory processing abilities and later reading struggles. Published in January in Research in Developmental Disabilities, the longitudinal study showed that auditory processing and speech recognition struggles in kindergarten and first grade corresponded to dyslexia diagnoses in the third grade.

This new research is in line with previous studies that have determined that the auditory centers of the brain in dyslexic readers are under-activated compared to their typically developing peers (interestingly enough, the visual centers of the brain in dyslexic readers are hyper-activated).

Given the criticality of developing auditory processing abilities in young children, what’s a parent to do?

On her Parent Smart blog, Dr. Martha Burns has a couple suggestions:

  • Bed time stories: “It doesn’t matter what the stories are. Many very young children love to hear the same storybook over and over, that is just fine.   Try to make a habit of 15 or more minutes a day of “quiet time” before bed in which your child selects a book and you read it together.” Dr. Burns includes age-specific suggestions for story time as well.
  • Audio books: “Rather than bringing a DVD player along on a trip, try audio-books. The advantage of an audio book over a DVD is that it builds listening skills which are critical for doing well in school and allows your child to follow along with the written pages as they listen to the book, so it builds reading skills as well.”

An intervention like the Fast ForWord programs may be appropriate as well. A study of public school children with Auditory Processing Disorder showed improvement in phonemic decoding and sight word reading abilities after training with Fast ForWord. And the Stanford study referenced above showed normalization of activity in critical areas of the brain used for reading and significant improvements in reading and oral language skills on a number of assessments after Fast ForWord training.

How children’s brains acquire language

February 1, 2011

In adults, injury to the areas of the brain that are responsible for language skills (Broca’s and Wernicke’s areas) result in loss of language abilities. However, injuries to those same areas in early childhood don’t seem to impact language development in a negative way. As a result, researchers have long thought that a different area of the brain was active in language acquisition. But new research from UC San Diego, published in the Oxford University Press journal Cerebral Cortex says otherwise: “similar left frontotemporal areas are used for encoding lexico-semantic information throughout the life span, from the earliest stages of word learning.”

From a recent Science Daily article summarizing the research:

Combining the cutting-edge technologies of MRI and MEG, scientists at the University of California, San Diego show that babies just over a year old process words they hear with the same brain structures as adults, and in the same amount of time. Moreover, the researchers found that babies were not merely processing the words as sounds, but were capable of grasping their meaning.

Study co-author Kathleen Travis, quoted in the Science Daily article:

“Babies are using the same brain mechanisms as adults to access the meaning of words from what is thought to be a mental ‘database’ of meanings, a database which is continually being updated right into adulthood.”

And from co-author Eric Halgren, also in the article:

“Our study shows that the neural machinery used by adults to understand words is already functional when words are first being learned. This basic process seems to embody the process whereby words are understood, as well as the context for learning new words.”

The allocation of attentional resources

January 7, 2011

The Dana Foundation Web site has a good summary of some of the most recent research into the underlying causes of attention challenges. The article outlines two we are familiar with: working memory and processing rates:

One theory holds that the disorder is primarily a problem with working memory–the ability to hold information in temporary storage long enough to act on it appropriately, while another group of theories centers around how information is processed in time.

“There are lots of psychological tests that show that ADHD kids just don’t get the timing of things quite right,” he says. “This would explain very nicely the impulsivity that is seen in ADHD; where they are not getting the very fine-grained timing of social interactions, for example.” In the classroom, this might manifest as blurting out the answer to a teacher’s query before one is called upon.

But the bulk of the article focuses on ADHD as a lack of allocation of attentional resources in the brain. From Philip Shaw, Ph. D., a scientist who studies ADHD at the National Institute of Mental Health:

“A child who is not staying on task in school could be paying attention to what’s going on outside the classroom. So it’s not that they are not doing something that is attention-demanding; it’s just that their focus is on something other than what they’re meant to be doing.” From that perspective, he says, thinking about ADHD as a problem with the allocation of attentional resources makes sense.

This may seem a logical explanation to parents and teachers. As the article points out:

Parents of children with ADHD, for example, may find it hard to fathom that a child who can spend hours engrossed in a video game has a problem with attention. Teachers may be confounded by a student who is fully engaged in a music lesson but is distracted or disruptive in other classwork.

The article continues with a description of the neural network of attention, with particular focus on the executive attention network, which “enables the individual to decide which things to attend to among competing brain activity.”

As the article points out in summary, “each of these theories offers tantalizing clues about what might be going wrong in the brains of children with ADHD, but they do not answer all of the questions.” And so the search continues…

Fast ForWord vs. Cogmed

January 5, 2011

Be Amazing Learning offers programs that address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain information they are exposed to, whether in the classroom or in daily life.

Two programs we use most frequently are Fast ForWord and Cogmed. Both programs are based on the concept of neuroplasticity (the lifelong ability of the brain to reorganize neural pathways based on new experiences). They both are computer-based interventions with rigorous daily protocols. And both have very solid foundational research behind them: Fast ForWord research and Cogmed research.

The programs differ in the cognitive skills they develop. Fast ForWord primarily develops auditory processing rates and auditory working memory, with additional training in sequencing and sustained attention. Cogmed primarily develops working memory (auditory and visual-spatial) and attention skills.

At Be Amazing Learning we recommend one or both of the programs for students, depending on the specific learning or behavior challenge they are dealing with. For example, we typically will recommend Cogmed for students struggling with ADD or ADHD. Cogmed addresses the underlying causes of inattentive behavior and improves attention by developing working memory and the ability to focus on multiple tasks and ignore distractions. (Poor auditory processing abilities can also contribute to attention challenges, and in these cases, the Fast ForWord programs may also be an effective intervention.)

Similarly, for students with dyslexia, we typically recommend the Fast ForWord programs, as they attack the auditory processing disorders that cause reading difficulties. And there’s great research on students with dyslexia showing significant improvements in reading and oral language skills on a number of assessments, as well as normalization of activity in critical areas of the brain used for reading after Fast ForWord training.

And in some cases, such as for students struggling with executive function disorder, we might recommend both programs, because they both effectively develop and strengthen the cognitive skills associated with successful executive function, including :

  • Memory – The ability to store information and ideas.
  • Attention – The ability to focus on information and tasks, and ignore distractions.
  • Processing Rate – The rate at which a student is able to accurately perceive and manipulate information.
  • Sequencing – Placing the detail of information in its accustomed order.

The bottom line is that nearly every child can benefit from improved brain processing efficiency.  Wherever your child is, Be Amazing Learning can help move them forward. Our programs have been proven to be effective with many types of learners of all ages, from students with diagnosed learning difficulties, to those simply struggling with homework or reading. With Cogmed and Fast ForWord at our disposal, we can design an effective training program to develop a range of foundational cognitive skills and improve academic potential and performance.


%d bloggers like this: