Questionnaire can help with early identification of autism

May 5, 2011

A growing body of research suggests that early intervention is important for helping children with autism spectrum disorders. But early identification, which is critical for early intervention, has been somewhat elusive.

A new questionnaire, designed to be completed by parents in the pediatrician’s office during the one-year-old well-baby checkup, may help. Researchers from the University of California at San Diego had pediatricians distribute the 24-question survey to parents of 10,479 babies. The test identified 1,371 babies as potentially having autism or other developmental delay. The researchers tracked 184 of those, of whom 32 were subsequently were found to have autism spectrum disorder, 56 had language delays, 9 had developmental delays and 36 had other problems.

The survey is promising, but there was one challenge: 25% of the babies identified as potentially having developmental delays ended up on a normal development path. Such a high false-positive rate could result in a lot of unnecessary anxiety for parents.

The New York Times recently highlighted the research, which was published in the Journal of Pediatrics:

Although many pediatricians don’t screen 1-year-olds for autism, there is a growing body of evidence suggesting early intervention can be effective, said Dr. Karen Pierce, the lead author of the study — published Thursday in The Journal of Pediatrics — and assistant director of the Autism Center of Excellence at University of California, San Diego.

The checklist poses simple questions, like whether a baby responds to his or her name, whether parents can tell when an infant is happy or upset, and whether a child engages in pretend play with dolls or stuffed animals.

Getting the most out of computer-based training programs

May 2, 2011

Computer-based training programs like Fast ForWord and Cogmed can be fantastic interventions for struggling learners because they take advantage of technology to provide precise, adaptive trials. They also provide a game-like format to engage students and allow for comprehensive remote monitoring. In the case of Fast ForWord, they also use complex algorithms to acoustically modify speech sounds to systematically develop processing rates in a way that humans simply cannot (we aren’t capable of slowing down a consonant sound like the <b> in <ba>). We have previously posted about how Fast ForWord uniquely takes advantage of technology to enhance student learning.

A post at Scientific Learning’s New Science of Learning blog addresses some of the challenges related to the efficacy of computer-based training programs. Specifically, it’s important to recognize:

  • What the training program is designed to do (and not to do):

These systems do not do the work of teachers; they are tools to supplement teacher instruction and inform educators’ decisions.  They are not, nor were they ever meant to be, a substitute for highly qualified educators. But when implemented and used correctly, computerized learning systems can and dohelp educators identify and address individual student needs and deliver results.

  • That the programs don’t do all of the work:

Making these solutions work takes work. They are not “plug and play,” nor are they designed to be a one-size-fits-all magic bullet. Computerized solution take careful planning, hours of professional development, and a deep staff and leadership commitment to following implementation protocols.

This second point is critically important, and is something we spend a lot of time refining. Effective computer-based training programs that are based on research into brain plasticity have a common challenge: adherence to a rigorous, intensive training schedule is critical for success. Both programs we work with (Fast ForWord and Cogmed) require a 5-day per week training schedule (daily schedules vary from 30-90 minutes, depending on the program and the child). In our experience, it is how successfully students adhere to this schedule, more than the degree of their learning challenge, that is the single biggest predictor of success with the programs. In short, the programs can achieve amazing results if kids can comply with the rigorous schedule, and they’re pretty mediocre if kids can’t.

So how do we ensure that kids can stick with the schedule?

While we just got finished saying that that the programs don’t do all of the work alone, they do help. Cogmed and Fast ForWord are both presented in an engaging, game-like format that appeals to kids. There are high scores, reward animations, and other supportive features that appear periodically while students are working. Additionally, the adaptive nature of the programs ensures that students are continually challenged at an engaging level: not so hard that they get frustrated, but not so easy that they aren’t learning. These programs aren’t exactly Playstation material, but they are fun and engaging.

As providers of the programs, we can help too. We monitor each child’s progress daily, so if they start to get off track (missed days or missed exercises), we can quickly engage parents in a solution. Comprehensive progress reports also help. For all students, these reports allow parents to identify the portions of the program that are most challenging and intervene with support where necessary. And the reports can engage older students in their own progress, allowing them to track the improvement of their cognitive skills and identify the areas that are proving most challenging. We’ve found that when older students are connected to their own learning in this way, they are more likely to stick with the prescribed training schedule. It’s a bit like seeing results in the mirror when you’re working out at the gym.

Great news! Parent’s language stumbles are good for kids!

April 27, 2011

It seems like most research studies we read about the impact parents have on the development of young children make us wish we had a do-over card. But here’s some refreshing news for those of us parents who doing the best we can: some of our mistakes can actually help our kids!

From Science Daily:

A team of cognitive scientists has good news for parents who are worried that they are setting a bad example for their children when they say “um” and “uh.” A study conducted at the University of Rochester’s Baby Lab shows that toddlers actually use their parents’ stumbles and hesitations (technically referred to as disfluencies) to help them learn language more efficiently.

For instance, say you’re walking through the zoo with your two-year-old and you are trying to teach him animal names. You point to the rhinoceros and say, “Look at the, uh, uh, rhinoceros.” It turns out that as you are fumbling for the correct word, you are also sending your child a signal that you are about to teach him something new, so he should pay attention, according to the researchers.

The conclusions are from a study published online on April 14 in the journal Developmental Science.

Quoted in the Science Daily article, lead study author Celeste Kidd, a graduate student at the University of Rochester, says “We’re not advocating that parents add disfluencies to their speech, but I think it’s nice for them to know that using these verbal pauses is OK — the “uh’s” and “um’s” are informative.”

If you’re interested in more about how parents can support their children’s language development, check out this post on the developing brain.

PBS NewsHour presents “Autism Now”

April 26, 2011

The PBS NewsHour just completed a 6-part series about autism. Causes, prevalence, research, funding: it’s all in there.

All six parts, as well as extended interviews with some of the experts are available on the NewsHour Web site, where you can also reserve a DVD of the series.

The impact of sleep on sustained attention

April 18, 2011

This weekend’s NY Times Magazine is all about health – everything from the toxicity of sugar to the question of whether cell phones cause cancer. One article that caught our eye (at least after a cup of morning coffee) asks “How little sleep can you get away with?

David Dinges, the head of the Sleep and Chronobiology Laboratory at the Hospital at the University of Pennsylvania has asked just this question, and the answer is: you should really try to get 8 hours. Dinges’ 2003 study assigned dozens of subjects to three different groups: some slept four hours, others six hours and others, for the lucky control group, eight hours — for two weeks in the lab. The study used a measure called psychomotor vigilance task, or PVT. PVT is a “tedious but simple if you’ve been sleeping well. It measures the sustained attention that is vital for pilots, truck drivers, astronauts. Attention is also key for focusing during long meetings; for reading a paragraph just once, instead of five times; for driving a car. It takes the equivalent of only a two-second lapse for a driver to veer into oncoming traffic.”

The results?

Those who had eight hours of sleep hardly had any attention lapses and no cognitive declines over the 14 days of the study. What was interesting was that those in the four- and six-hour groups had P.V.T. results that declined steadily with almost each passing day. Though the four-hour subjects performed far worse, the six-hour group also consistently fell off-task. By the sixth day, 25 percent of the six-hour group was falling asleep at the computer. And at the end of the study, they were lapsing fives times as much as they did the first day.

The six-hour subjects fared no better — steadily declining over the two weeks — on a test of working memory in which they had to remember numbers and symbols and substitute one for the other. The same was true for an addition-subtraction task that measures speed and accuracy. All told, by the end of two weeks, the six-hour sleepers were as impaired as those who, in another Dinges study, had been sleep-deprived for 24 hours straight — the cognitive equivalent of being legally drunk.

These results are particularly interesting in light of a study recently published in the journal SLEEP that indicated that loss of an hour of sleep per night among children with ADHD had a significant impact on their ability to remain focused and sustain attention From a Science Daily article summarizing the research: “The study suggests that even moderate reductions in sleep duration can affect neurobehavioral functioning, which may have a negative impact on the academic performance of children with ADHD.”

Results of multivariate analyses of variance show that after mean nightly sleep loss of about 55 minutes for six nights, the performance of children with ADHD on a neurobehavioral test deteriorated from the subclinical range to the clinical range of inattention on four of six measures, including omission errors (missed targets) and reaction time. Children with ADHD generally committed more omission errors than controls. Although the performance of children in the control group also deteriorated after mean nightly sleep loss of 34 minutes for six nights, it did not reach a clinical level of inattention on any of the six measures.

Reut Gruber, PhD, assistant professor in the department of psychiatry at McGill University and director of the Attention, Behavior and Sleep Laboratory at Douglas Mental Health University Institute in Montreal, Québec, quoted in the Science Daily article, has advice for parents:

“The reduction in sleep duration in our study was modest and similar to the sleep deprivation that might occur in daily life,” Gruber said. “Thus, even small changes in dinner time, computer time, or staying up to do homework could result in poorer neurobehavioral functioning the following day and affect sustained attention and vigilance, which are essential for optimal academic performance.”

“An important implication of the present study is that investments in programs that aim to decrease sleep deprivation may lead to improvements in neurobehavioral functioning and academic performance,” she said.

I don’t know about you, but we’re going to go take a nap.

The Thirsty Linguist reviews Oliver Sacks’ latest book “The Mind’s Eye”

March 31, 2011

Doctor and author Oliver Sacks is known for bringing neuroscience to the masses. In The Man Who Mistook His Wife for a Hat and Awakenings (which was made into a movie starring Robert DeNiro and Robin Williams), Sacks explores neurological disorders with the writing skills of a novelist.

Our friend, the Thirsty Linguist, reviews Sacks’ latest book, The Mind’s Eye, which explores the human experience of vision:

As in some of his previous books, Sacks presents case histories of individuals suffering from neurological injury or disease, and uses these histories as a means to probe the capacities of the mind. Lilian Kallir, for example, is a pianist who loses the ability to read, even though the rest of her vision remains intact and, puzzingly, she can still write. Sacks follows Lilian’s story over a period of three years, describing the coping strategies she develops, such as color-coding items in her home, as well as the new talents that arise unexpectedly with her condition, such as the ability to re-arrange musical pieces in her mind without consulting a score. Howard Engel, featured in another case history, is a writer who also loses the ability to read, but he approaches his situation differently: he rejects audiobooks, refuses to give up the world of text, and painstakingly learns his ABCs all over again.

Lilian’s and Howard’s cases both suggest that the brain has a specific location dedicated to reading. But it is not at all obvious why this should be so. Unlike spoken language, which evolved over hundreds of thousands of years, written language is a relatively recent cultural invention that offered no survival advantage to humans in primitive societies. Plasticity offers a potential answer to this conundrum: we can and do use structures in the brain for purposes very different from those for which they evolved. Sacks casts a wide net to gather evidence for this idea. He describes case histories of nineteenth century neurologists, who treated patients with symptoms similar to Lilian’s and Howard’s. He cites evolutionary thinkers from Charles Darwin and Alfred Russel Wallace to Stephen Jay Gould and Elisabeth Vrba, tracing the history of the notion of “exaptation,” a biological adaptation which gets put to a new use. He presents key results from imaging studies which demonstrate that different areas of the brain are active during reading versus listening. And he summarizes a computational study of over 100 writing systems which shows that, despite their diversity, these systems share basic visual signatures which resemble those found in natural settings.

The Mind’s Eye thus offers narrative science writing of the most satisfying kind. We delight in pedagogical moments because Sacks weaves them seamlessly into the case histories. We get drawn into the topics of evolution, brain imaging, and computation because we want to follow people like Lilian and Howard. “Make characters the matter of your narrative,” advises James Shreeve in A Field Guide for Science Writers, “and let the science spill from their relations.” Sacks does precisely that.

If Sacks’ work intrigues you, you might also be interested in:

It’s About Time…

March 29, 2011

Auditory processing describes what happens when the brain recognizes and interprets sounds. Humans hear when energy that we recognize as sound travels through the ear and is changed into electrical information that can be interpreted by the brain. For many students, something is adversely affecting the processing or interpretation of this information. As a result, these students often do not recognize subtle differences between sounds in words, even though the sounds themselves are loud and clear. For example: “Tell me how a chair and a couch are alike” may sound to a child struggling with auditory processing like “Tell me how a hair and a cow are alike.”

These kinds of problems are more likely to occur when the child is in a noisy environment or is listening to complex information.

The Temporal Dynamics of Learning Center (TDLC) at the University of California is one of six Science of Learning Centers funded by the National Science Foundation. Its purpose is “to understand how the element of time and timing is critical for learning, and to apply this understanding to improve educational practice.”

What is the role of timing in learning? From the TDLC Web site:

When you learn new facts, interact with colleagues and teachers, experiment with new gadgets, or engage in countless other learning activities, timing plays a role in the functioning of your neurons, in the communication between and within sensory systems, and in the interactions between different regions of your brain. The success or failure of attempts to communicate using gestures, expressions and verbal language also depend on timing.

In short, timing is critical for learning at every level, from learning the precise temporal patterns of speech sounds, to learning appropriate sequences of movements, to optimal training and instructional schedules for learning, to interpreting the streams of social signals that reinforce learning in the classroom.

Learning depends on the fine-scale structure of the timing between stimuli, response, and reward. The brain is exquisitely sensitive to the temporal structure of sensory experience:

  • at the millisecond time scale in the auditory system;
  • at the second time scale in reinforcement learning;
  • at the minute time scale for action-perception adaptation; and
  • at the day-to-week time scale for consolidation and maturation.

Each level of learning has its own temporal dynamics, and its own timing constraints that affect learning. These levels are not independent, but instead, timing constraints at one level affect learning at another level in a nested way. For example, the dynamics at the cellular level, which is often on the order of milliseconds, implement learning on the whole-brain and behavioral level on much longer time scales, including memories that last a lifetime.

The past decade of neuroscience research demonstrates that the intrinsic temporal dynamics of processes within the brain also reinforce and constrain learning. For example, we have discovered that slow learners tend to have slow “shutter speeds” in terms of how their brains take in and process information. For some poor readers, the underlying problem is the their inability to perceive fast acoustic changes in speech sounds (phonemes) that must be accurately perceived in order to learn letter-sound correspondence rules for reading.

Fortunately, says the TDLC Web site, “Neuroscience-based training regimes that improve this temporal processing ability improve both spoken and written language learning in struggling readers.”

One such training program is the Fast ForWord program, which can be an effective intervention for children with struggling with processing rates because it goes right to the cause of the problem, strengthening the gray matter in the area of the brain responsible for processing auditory information. With Fast ForWord, children are first exposed to sounds that are modified to enhance the minute acoustic differences between similar speech sounds. As children demonstrate proficiency and build new neural pathways, the program automatically reduces the level of modification, until eventually students are challenged to process normal speech sounds.

When their brains are processing speech sounds at peak efficiency, students can better  recognize and discriminate the rapidly changing sounds that are important for discriminating phonemes (the smallest units of speech that distinguish one word from another). As a result, they will more easily:

  • Attend and respond to directions and class discussions
  • Remember questions, directions, and information
  • Learn to read and become a better reader

Competing Memories

March 25, 2011

Does something like this ever happen to you?  From Yale psychologist Brice Kuhl, quoted in a NY Times article about memory:

“I park in a garage every day at work, and I park in a different space every day, depending on availability. And I very often walk to where I parked the day before. It’s not that I totally forgot where I parked, it’s just that I still remember yesterday’s spot.”

When the brain is cluttered with similar items (say a new password replacing an expired one, or a new phone number), we have difficulty recalling just one. Kuhl’s research (published in the Proceedings of the National Academy of Sciences) indicates that this difficulty is reflected in “more ambiguous” neural activation when engaged in competitive remembering as compared to “more robust” activation for non-competitive memories.

High creativity in adults with ADHD

March 24, 2011

Research conducted at the University of Michigan and Eckerd College, and published in the current issue of Personality and Individual Differences suggests that adults with ADHD are more creative than their non-attention-impaired peers. The research also indicates that adults with ADHD are “ideators” (they like to generate ideas), while non-ADHD adults tend to be “clarifiers” (who prefer to define and structure problems) and “developers” (who who elaborate or refine ideas and solutions).

We frequently think about ADHD as a disability, and it can have crippling effects on students’ ability to focus in a classroom setting and to adjust academically and socially. However, as study co-author and associate professor at the University of Michigan Priti Shah says (quoted in a Science Daily article summarizing the research): “Individuals who are not succeeding as well academically may benefit from understanding that there may be tradeoffs associated with ADHD. With extra motivation to overcome difficulties in planning, attention, and impulsivity, they may be able to take greater advantage of their creative strengths.”

TED Talk: Dr. Michael Merzenich on Rewiring the Brain

March 23, 2011

Dr. Michael Merzenich is a pioneer in brain plasticity research. In this TED Talk, recorded in 2004, Dr. Merzenich describes impairments to the brain’s processing ability, and how we can train the brain back to normal processing:

We now have a large body of literature that demonstrates that the fundamental problem that occurs in the majority of children that have early language impairments, and that are going to struggle to learn to read, is that their language processor is created in a defective form. And the reason that it rises in a defective form is because early in the baby’s brain’s life the machine process is noisy. It’s that simple. It’s a signal to noise problem. Okay? And there are a lot of things that contribute to that. There are numerous inherited faults that could make the machine process noisier.

Every sound the child hears uncorrected is muffled. It’s degraded. The child’s native language is such a case is not English. It’s not Japanese. It’s muffled English. It’s degraded Japanese. It’s crap. And the brain specializes for it. It creates a representation of language crap. And then the child is stuck with it.

Now the crap doesn’t just happen in the ear. It can also happen in the brain. The brain itself can be noisy. It’s commonly noisy. There are many inherited faults that can make it noisier. And the native language for a child with such a brain is degraded. It’s not English. It’s noisy English. And that results in defective representations of sounds of words, not normal, a different strategy, by a machine that has different space constants. And you can look in the brain of such a child and record those time constants. They are about an order of magnitude longer, about 11 times longer in duration on average, than in a normal child. Space constants are about three times greater. Such a child will have memory and cognitive deficits in this domain. Of course they will. Because as a receiver of language, they are receiving it and representing it. And in information it’s representing crap. And they are going to have poor reading skills. Because reading is dependent upon the translation of word sounds into this orthographic or visual representational form. If you don’t have a brain representation of word sounds that translation makes no sense. And you are going to have corresponding abnormal neurology.

The point is is that you can train the brain out of this. A way to think about this is you can actually re-refine the processing capacity of the machinery by changing it. Changing it in detail. It takes about 30 hours on the average. And we’ve accomplished that in about 430,000 kids today. Actually about 15,000 children are being trained as we speak. And actually when you look at the impacts, the impacts are substantial.

Think of a classroom of children in the language arts. Think of the children on the slow side of the class. We have the potential to move most of those children to the middle or to the right side. In addition to accurate language training it also fixes memory and cognition speech fluency and speech production, And an important language dependent skill is enabled by this training — that is to say reading. And to a large extent it fixes the brain. You can look down in the brain of a child. in a variety of tasks that scientists have at Stanford, and MIT, and UCSF, and UCLA, and a number of other institutions. And children operating in various language behaviors, or in various reading behaviors, you see for the most extent, for most children, their neuronal responses, complexly abnormal before you start, are normalized by the training.

There’s some stuff about monkeys in the middle that went a little over our heads, but the talk is worth the 20 minute investment.

%d bloggers like this: