Archive for the ‘research’ Category

Competing Memories

March 25, 2011

Does something like this ever happen to you?  From Yale psychologist Brice Kuhl, quoted in a NY Times article about memory:

“I park in a garage every day at work, and I park in a different space every day, depending on availability. And I very often walk to where I parked the day before. It’s not that I totally forgot where I parked, it’s just that I still remember yesterday’s spot.”

When the brain is cluttered with similar items (say a new password replacing an expired one, or a new phone number), we have difficulty recalling just one. Kuhl’s research (published in the Proceedings of the National Academy of Sciences) indicates that this difficulty is reflected in “more ambiguous” neural activation when engaged in competitive remembering as compared to “more robust” activation for non-competitive memories.

TED Talk: Dr. Michael Merzenich on Rewiring the Brain

March 23, 2011

Dr. Michael Merzenich is a pioneer in brain plasticity research. In this TED Talk, recorded in 2004, Dr. Merzenich describes impairments to the brain’s processing ability, and how we can train the brain back to normal processing:

We now have a large body of literature that demonstrates that the fundamental problem that occurs in the majority of children that have early language impairments, and that are going to struggle to learn to read, is that their language processor is created in a defective form. And the reason that it rises in a defective form is because early in the baby’s brain’s life the machine process is noisy. It’s that simple. It’s a signal to noise problem. Okay? And there are a lot of things that contribute to that. There are numerous inherited faults that could make the machine process noisier.

Every sound the child hears uncorrected is muffled. It’s degraded. The child’s native language is such a case is not English. It’s not Japanese. It’s muffled English. It’s degraded Japanese. It’s crap. And the brain specializes for it. It creates a representation of language crap. And then the child is stuck with it.

Now the crap doesn’t just happen in the ear. It can also happen in the brain. The brain itself can be noisy. It’s commonly noisy. There are many inherited faults that can make it noisier. And the native language for a child with such a brain is degraded. It’s not English. It’s noisy English. And that results in defective representations of sounds of words, not normal, a different strategy, by a machine that has different space constants. And you can look in the brain of such a child and record those time constants. They are about an order of magnitude longer, about 11 times longer in duration on average, than in a normal child. Space constants are about three times greater. Such a child will have memory and cognitive deficits in this domain. Of course they will. Because as a receiver of language, they are receiving it and representing it. And in information it’s representing crap. And they are going to have poor reading skills. Because reading is dependent upon the translation of word sounds into this orthographic or visual representational form. If you don’t have a brain representation of word sounds that translation makes no sense. And you are going to have corresponding abnormal neurology.

The point is is that you can train the brain out of this. A way to think about this is you can actually re-refine the processing capacity of the machinery by changing it. Changing it in detail. It takes about 30 hours on the average. And we’ve accomplished that in about 430,000 kids today. Actually about 15,000 children are being trained as we speak. And actually when you look at the impacts, the impacts are substantial.

Think of a classroom of children in the language arts. Think of the children on the slow side of the class. We have the potential to move most of those children to the middle or to the right side. In addition to accurate language training it also fixes memory and cognition speech fluency and speech production, And an important language dependent skill is enabled by this training — that is to say reading. And to a large extent it fixes the brain. You can look down in the brain of a child. in a variety of tasks that scientists have at Stanford, and MIT, and UCSF, and UCLA, and a number of other institutions. And children operating in various language behaviors, or in various reading behaviors, you see for the most extent, for most children, their neuronal responses, complexly abnormal before you start, are normalized by the training.

There’s some stuff about monkeys in the middle that went a little over our heads, but the talk is worth the 20 minute investment.

Creativity in Young Learners

March 8, 2011

Two blogs we follow have recently tackled the topic of creativity in young learners, each from a slightly different perspective:

A recent post at Sharpbrains.com features an excerpt from John Medina’s book Brain Rules for Baby that looks at the link between creativity and a certain kind of risk-taking. Medina describes “functional impulsivity”, the presence of which makes you more creative:

What ever their gender, creative entrepreneurs have functional impulsivity instincts in spades. They score atmospherically high on tests that measure risk­ taking, and they have a strong ability to cope with ambiguity. When their brains are caught in the act of being creative, the medial and orbital sectors of the pre­frontal cortex, regions just behind the eyes, light up like crazy on an fMRI. More “managerial types” (that’s actually what researchers call them) don’t have these scores—or these neural activities.

Medina is careful to differentiate functional impulsivity from, say, putting life and limb at risk on a dare, which tends to be associated not with creativity but with substance abuse.

At Scientific Learning’s Science of Learning blog, the topic of creativity is focused on the books of Edward de Bono, who proposes methods for teaching students to think creatively and “create context from nothingness.”

In one example, he describes how a teacher shows his students a photo of people dressed in street clothes wading through water at a beach. The teacher then asks the students to come up with interpretations as to what is going on in the picture. The teacher has de-emphasized the context; the crux of the activity is to develop the context using their imaginations.

In this situation, de Bono says that students might respond by saying that the picture shows a group of people caught by the tide, or a group crossing a flooded river, or people wading out to a ferry boat which cannot come to shore, or people coming ashore from a wrecked boat.

The fact that the photo is actually of a group of people protesting at a beach is completely irrelevant. The author stresses that the right answer is not important; generating as many interpretations as possible is. The teacher has created a safe, controlled environment and activity where students are encouraged to think outside the box and exercise creative habits of mind, free from qualitative judgment. He even goes on to suggest that if a student comes up with a particularly unfeasible interpretation, the teacher should not judge, but continue to question the student until the context for the interpretation becomes clear, encouraging cultivation of the student’s creative skill.

Medina’s books on the neuroscience of development differentiate between the “seeds”, which is what a child is born with, and the “soil” which is what parents and others can do to nurture that raw material. These two posts, taken together, indicate that when it comes to creativity, both play a role.

Moonwalking with Einstein

February 28, 2011

Last weekend’s NY Times Magazine featured an excerpt from journalist Joshua Foer’s new book Moonwalking with Einstein: The Art and Science of Remembering Everything. It’s the fascinating story of his quest to become the memory champion of the United States (add that to the list of things we didn’t know anything about).

As we’ve previously posted, there’s an important distinction between memory and memorization. Nonetheless, memorization techniques can give us clues about memory, particularly from an evolutionary standpoint. For example, Foer highlights a study that showed that expert memorizers have neither anatomically distinguishable brains nor above average levels of cognitive abilities. But what they do share is a higher level of activation in the area of the brain responsible for visual and spatial memory. Experts attribute this to the fact that our ancestors relied on visual spatial memory for survival (where’s the food? where are the predators?).

Foer’s journey to the title is interesting, at least in part because he really set out just to learn about memorization and ended up a champion. The Times article links to two resources for memorizing numbers and names. For more on Foer, check out this story by NPR’s All Things Considered.

TED Talk on the Linguistic Genius of Babies

February 17, 2011

In this great 10-minute lecture, Patricia Kuhl, co-director of the Institute for Brain and Learning Sciences at the University of Washington, shares her findings about how babies learn one language over another — by listening to the humans around them and “taking statistics” on the sounds they need to know.

Experiments and brain imaging show how 6-month-old babies use sophisticated reasoning to understand their world. Dr. Kuhl’s work has played a major role in demonstrating how early exposure to language alters the brain. It has implications for critical periods in development, for bilingual education and reading readiness, for developmental disabilities involving language, and for research on computer understanding of speech.

The pen is mightier than the keyboard

February 16, 2011

If you want to learn, scientists say, put pen to paper.

A recent article in Business Week cited research in France and Norway, which concluded that “writing by hand is actually a very different sensory experience than typing on a keyboard, with each activating distinctly different parts of the brain.”

Study co-author, associate professor Anne Mangen from the University of Stavangers Reading Centre in Stavanger, Norway, says:

Tests reveal that the act of handwriting — literally the feeling of touching a pen to paper — appears to imprint a “motor memory” in the sensorimotor region of the brain. In turn, this process promotes the visual recognition of letters and words, suggesting that the two seemingly separate acts of reading and writing are, in fact, linked.

In the study, participants were taught a new alphabet. Those who studied by writing out the letters by hand learned significantly more than those who studied only on a computer. Additionally, “brain scans revealed that while learning by handwriting prompted activity in a particular part of the brain known as Broca’s area, learning by keyboarding prompted little or no such activity.” Broca’s area is the portion of the brain most associated with speech production.

If you’re interested in more research-based study tips, check out these previous posts from our blog:

Hat tip to Posit Science for the link to the Business Week article.

Blueberries on the brain

February 9, 2011

The January 2011 issue of Scientific American Mind picks up some research we have been following about flavonoids, which research shows may improve memory, learning and general cognitive function:

Emerging research suggests that compounds in blueberries known as flavonoids may improve memory, learning and general cognitive function, including reasoning skills, decision making, verbal comprehension and numerical ability. In addition, studies comparing dietary habits with cognitive function in adults hint that consuming flavonoids may help slow the decline in mental facility that is often seen with aging and might even provide protection against disorders such as Alzheimer’s and Parkinson’s.

We have previously posted about the impact of flavonoids (which also occur in chocolate) on math skills. In the article we cited, study authors indicated flavonoids worked by increasing blood flow to the brain. This more recent article indicates that researchers believe flavonoids impact cognition by interacting with proteins that are integral to brain-cell structure and function.

Either way, we like the idea of good-tasting foods being good for the brain!

Good kids who do dumb things with their friends

February 8, 2011

Parents of teenagers may frequently find themselves asking their children “What was going through your head?” New research from Temple University indicates that their friends may be to blame.

From the NY Times Well blog:

Teenage peer pressure has a distinct effect on brain signals involving risk and reward, helping to explain why young people are more likely to misbehave and take risks when their friends are watching.

In the study, teenagers and adults played a game with the goal of completing a driving mission in as little time as possible. In the game, participants had to make decisions such as whether to run a yellow light that could improve their time but also increased their chance of a crash. The participants each ran through the game alone and again after being told that two of their friends were watching them while they played. The results?:

Among adults and college students, there were no meaningful differences in risk taking, regardless of  whether friends were watching. But the young teenagers ran about 40 percent more yellow lights and had 60 percent more crashes when they knew their friends were watching. And notably, the regions of the brain associated with reward showed greater activity when they were playing in view of their friends. It was as if the presence of friends, even in the next room, prompted the brain’s reward system to drown out any warning signals about risk, tipping the balance toward the reward.

What’s a parent to do? Study co-author (and author of the book You and Your Adolescent: The Essential Guide for Ages 10-25) Laurence Steinberg, quoted in the Times article, says:

All of us who have very good kids know they’ve done really dumb things when they’ve been with their friends. The lesson is that if you have a kid whom you think of as very mature and able to exercise good judgment, based on your observations when he or she is alone or with you, that doesn’t necessarily generalize to how he or she will behave in a group of friends without adults around. Parents should be aware of that.

More research on the importance of auditory processing abilities for reading

February 7, 2011

We were interested to see new research from Belgium that looks at the link between early auditory processing abilities and later reading struggles. Published in January in Research in Developmental Disabilities, the longitudinal study showed that auditory processing and speech recognition struggles in kindergarten and first grade corresponded to dyslexia diagnoses in the third grade.

This new research is in line with previous studies that have determined that the auditory centers of the brain in dyslexic readers are under-activated compared to their typically developing peers (interestingly enough, the visual centers of the brain in dyslexic readers are hyper-activated).

Given the criticality of developing auditory processing abilities in young children, what’s a parent to do?

On her Parent Smart blog, Dr. Martha Burns has a couple suggestions:

  • Bed time stories: “It doesn’t matter what the stories are. Many very young children love to hear the same storybook over and over, that is just fine.   Try to make a habit of 15 or more minutes a day of “quiet time” before bed in which your child selects a book and you read it together.” Dr. Burns includes age-specific suggestions for story time as well.
  • Audio books: “Rather than bringing a DVD player along on a trip, try audio-books. The advantage of an audio book over a DVD is that it builds listening skills which are critical for doing well in school and allows your child to follow along with the written pages as they listen to the book, so it builds reading skills as well.”

An intervention like the Fast ForWord programs may be appropriate as well. A study of public school children with Auditory Processing Disorder showed improvement in phonemic decoding and sight word reading abilities after training with Fast ForWord. And the Stanford study referenced above showed normalization of activity in critical areas of the brain used for reading and significant improvements in reading and oral language skills on a number of assessments after Fast ForWord training.

Computer-based program relieves ADHD symptoms in children

February 4, 2011

The research validating the effectiveness of Cogmed Working Memory Training at improving attention skills keeps rolling in. Science Daily recently highlighted research by psychologists from Ohio State University, published in the November/December 2010 issue of the Journal of Clinical Child & Adolescent Psychology:

Researchers found significant changes for students who completed the program in areas such as attention, ADHD symptoms, planning and organization, initiating tasks, and working memory.

The study asked parents and teachers to complete observational surveys before and after training, as well as in a 4-month post-training follow up:

Results showed that parents generally rated their children as improving on inattention, overall number of ADHD symptoms, working memory, planning and organization and in initiating tasks. These changes were evident both immediately after treatment and four months later.

One interesting aspect of this study is that unlike previous efficacy studies for Cogmed, this one included students who were on and off medication for their ADHD:

“Most kids with ADHD are on some kind of medication, so it helps to know how this intervention works in these cases,” said study co-author Steven Beck.

In this sample, 60 percent of the students were on medication. The results showed the program was equally effective regardless of whether they were on medication or not.

“Medication for ADHD does not help directly with working memory, and the training program does, so it can be useful,” Beck said.

Solid foundational and efficacy research is a common characteristic of the learning programs we offer. It’s great to see additional research that documents the success of Cogmed with an ever-larger population of struggling learners.


%d bloggers like this: