Archive for the ‘dyslexia’ Category
July 11, 2011
The Wall Street Journal reports on recent research into the use of character-based languages such as the Japanese language kanji.
Learners with dyslexia struggle with the association between letters and sounds in English (a language in which words are comprised of groups of sounds that readers decode). However, character-based languages, where the characters represent complete words or ideas, are mastered through memorization, a skill that many students with dyslexia have mastered to compensate for their decoding struggles.
One study featured in the WSJ article looked at fMRI brain scans of dyslexic students and discovered that they use the same area of the brain to read English as do readers of kanji, a character-based Japanese language. This is different from the area of the brain used by typically developing English readers (and readers of kana, another Japanese language in which characters represent sounds instead of words or ideas).
As the article notes, we don’t cure dyslexia by teaching students in a character-based language. But it does offer some insight into how these kids’ brains are working differently and how teachers might be able to deliver reading-based content more effectively.
We have a link to a fantastic dyslexia study on our Web site. The study, performed at Stanford, is very consistent with the findings discussed in the WSJ article, as it supports the idea that students with dyslexia tend to make reading a more visual task, while typically developing readers integrate auditory processing as well.
Like this:
Like Loading...
Tags:auditory processing, decoding, dyslexia, language, memory, MRI, reading, reading comprehension, research, Sally Shaywitz, study skills, working memory
Posted in auditory processing, dyslexia, language, memory, reading, research | 1 Comment »
June 17, 2011
Be Amazing Learning client Sami Merit was featured on San Francisco Bay Area ABC 7 News, as part of a story that looked at Fast ForWord use at home and at an Oakland elementary school.
Hooray Sami!
http://abclocal.go.com/kgo/story?section=news/health&id=8195812
Like this:
Like Loading...
Tags:auditory processing, brain fitness, education, families, Fast ForWord, press coverage, reading comprehension, research, results
Posted in ADHD, attention, auditory processing, brain fitness, company information, computer-assisted learning, dyslexia, Fast ForWord, parent feedback, reading | Leave a Comment »
March 31, 2011
Doctor and author Oliver Sacks is known for bringing neuroscience to the masses. In The Man Who Mistook His Wife for a Hat and Awakenings (which was made into a movie starring Robert DeNiro and Robin Williams), Sacks explores neurological disorders with the writing skills of a novelist.
Our friend, the Thirsty Linguist, reviews Sacks’ latest book, The Mind’s Eye, which explores the human experience of vision:
As in some of his previous books, Sacks presents case histories of individuals suffering from neurological injury or disease, and uses these histories as a means to probe the capacities of the mind. Lilian Kallir, for example, is a pianist who loses the ability to read, even though the rest of her vision remains intact and, puzzingly, she can still write. Sacks follows Lilian’s story over a period of three years, describing the coping strategies she develops, such as color-coding items in her home, as well as the new talents that arise unexpectedly with her condition, such as the ability to re-arrange musical pieces in her mind without consulting a score. Howard Engel, featured in another case history, is a writer who also loses the ability to read, but he approaches his situation differently: he rejects audiobooks, refuses to give up the world of text, and painstakingly learns his ABCs all over again.
Lilian’s and Howard’s cases both suggest that the brain has a specific location dedicated to reading. But it is not at all obvious why this should be so. Unlike spoken language, which evolved over hundreds of thousands of years, written language is a relatively recent cultural invention that offered no survival advantage to humans in primitive societies. Plasticity offers a potential answer to this conundrum: we can and do use structures in the brain for purposes very different from those for which they evolved. Sacks casts a wide net to gather evidence for this idea. He describes case histories of nineteenth century neurologists, who treated patients with symptoms similar to Lilian’s and Howard’s. He cites evolutionary thinkers from Charles Darwin and Alfred Russel Wallace to Stephen Jay Gould and Elisabeth Vrba, tracing the history of the notion of “exaptation,” a biological adaptation which gets put to a new use. He presents key results from imaging studies which demonstrate that different areas of the brain are active during reading versus listening. And he summarizes a computational study of over 100 writing systems which shows that, despite their diversity, these systems share basic visual signatures which resemble those found in natural settings.
The Mind’s Eye thus offers narrative science writing of the most satisfying kind. We delight in pedagogical moments because Sacks weaves them seamlessly into the case histories. We get drawn into the topics of evolution, brain imaging, and computation because we want to follow people like Lilian and Howard. “Make characters the matter of your narrative,” advises James Shreeve in A Field Guide for Science Writers, “and let the science spill from their relations.” Sacks does precisely that.
If Sacks’ work intrigues you, you might also be interested in:
Like this:
Like Loading...
Tags:brain fitness, dyslexia, intelligence, language, Oliver Sacks, reading, reading comprehension, research, writing
Posted in brain fitness, dyslexia, language, memory, reading, research, writing | Leave a Comment »
March 29, 2011
Auditory processing describes what happens when the brain recognizes and interprets sounds. Humans hear when energy that we recognize as sound travels through the ear and is changed into electrical information that can be interpreted by the brain. For many students, something is adversely affecting the processing or interpretation of this information. As a result, these students often do not recognize subtle differences between sounds in words, even though the sounds themselves are loud and clear. For example: “Tell me how a chair and a couch are alike” may sound to a child struggling with auditory processing like “Tell me how a hair and a cow are alike.”
These kinds of problems are more likely to occur when the child is in a noisy environment or is listening to complex information.
The Temporal Dynamics of Learning Center (TDLC) at the University of California is one of six Science of Learning Centers funded by the National Science Foundation. Its purpose is “to understand how the element of time and timing is critical for learning, and to apply this understanding to improve educational practice.”
What is the role of timing in learning? From the TDLC Web site:
When you learn new facts, interact with colleagues and teachers, experiment with new gadgets, or engage in countless other learning activities, timing plays a role in the functioning of your neurons, in the communication between and within sensory systems, and in the interactions between different regions of your brain. The success or failure of attempts to communicate using gestures, expressions and verbal language also depend on timing.
In short, timing is critical for learning at every level, from learning the precise temporal patterns of speech sounds, to learning appropriate sequences of movements, to optimal training and instructional schedules for learning, to interpreting the streams of social signals that reinforce learning in the classroom.
Learning depends on the fine-scale structure of the timing between stimuli, response, and reward. The brain is exquisitely sensitive to the temporal structure of sensory experience:
- at the millisecond time scale in the auditory system;
- at the second time scale in reinforcement learning;
- at the minute time scale for action-perception adaptation; and
- at the day-to-week time scale for consolidation and maturation.
Each level of learning has its own temporal dynamics, and its own timing constraints that affect learning. These levels are not independent, but instead, timing constraints at one level affect learning at another level in a nested way. For example, the dynamics at the cellular level, which is often on the order of milliseconds, implement learning on the whole-brain and behavioral level on much longer time scales, including memories that last a lifetime.
The past decade of neuroscience research demonstrates that the intrinsic temporal dynamics of processes within the brain also reinforce and constrain learning. For example, we have discovered that slow learners tend to have slow “shutter speeds” in terms of how their brains take in and process information. For some poor readers, the underlying problem is the their inability to perceive fast acoustic changes in speech sounds (phonemes) that must be accurately perceived in order to learn letter-sound correspondence rules for reading.
Fortunately, says the TDLC Web site, “Neuroscience-based training regimes that improve this temporal processing ability improve both spoken and written language learning in struggling readers.”
One such training program is the Fast ForWord program, which can be an effective intervention for children with struggling with processing rates because it goes right to the cause of the problem, strengthening the gray matter in the area of the brain responsible for processing auditory information. With Fast ForWord, children are first exposed to sounds that are modified to enhance the minute acoustic differences between similar speech sounds. As children demonstrate proficiency and build new neural pathways, the program automatically reduces the level of modification, until eventually students are challenged to process normal speech sounds.
When their brains are processing speech sounds at peak efficiency, students can better recognize and discriminate the rapidly changing sounds that are important for discriminating phonemes (the smallest units of speech that distinguish one word from another). As a result, they will more easily:
- Attend and respond to directions and class discussions
- Remember questions, directions, and information
- Learn to read and become a better reader
Like this:
Like Loading...
Tags:auditory processing, brain fitness, decoding, education, executive function, Fast ForWord, language, perception, reading, reading comprehension, research, UC San Diego, writing
Posted in ADHD, attention, auditory processing, brain fitness, computer-assisted learning, dyslexia, Fast ForWord, perception, research | Leave a Comment »
March 23, 2011
Dr. Michael Merzenich is a pioneer in brain plasticity research. In this TED Talk, recorded in 2004, Dr. Merzenich describes impairments to the brain’s processing ability, and how we can train the brain back to normal processing:
We now have a large body of literature that demonstrates that the fundamental problem that occurs in the majority of children that have early language impairments, and that are going to struggle to learn to read, is that their language processor is created in a defective form. And the reason that it rises in a defective form is because early in the baby’s brain’s life the machine process is noisy. It’s that simple. It’s a signal to noise problem. Okay? And there are a lot of things that contribute to that. There are numerous inherited faults that could make the machine process noisier.
…
Every sound the child hears uncorrected is muffled. It’s degraded. The child’s native language is such a case is not English. It’s not Japanese. It’s muffled English. It’s degraded Japanese. It’s crap. And the brain specializes for it. It creates a representation of language crap. And then the child is stuck with it.
…
Now the crap doesn’t just happen in the ear. It can also happen in the brain. The brain itself can be noisy. It’s commonly noisy. There are many inherited faults that can make it noisier. And the native language for a child with such a brain is degraded. It’s not English. It’s noisy English. And that results in defective representations of sounds of words, not normal, a different strategy, by a machine that has different space constants. And you can look in the brain of such a child and record those time constants. They are about an order of magnitude longer, about 11 times longer in duration on average, than in a normal child. Space constants are about three times greater. Such a child will have memory and cognitive deficits in this domain. Of course they will. Because as a receiver of language, they are receiving it and representing it. And in information it’s representing crap. And they are going to have poor reading skills. Because reading is dependent upon the translation of word sounds into this orthographic or visual representational form. If you don’t have a brain representation of word sounds that translation makes no sense. And you are going to have corresponding abnormal neurology.
…
The point is is that you can train the brain out of this. A way to think about this is you can actually re-refine the processing capacity of the machinery by changing it. Changing it in detail. It takes about 30 hours on the average. And we’ve accomplished that in about 430,000 kids today. Actually about 15,000 children are being trained as we speak. And actually when you look at the impacts, the impacts are substantial.
…
Think of a classroom of children in the language arts. Think of the children on the slow side of the class. We have the potential to move most of those children to the middle or to the right side. In addition to accurate language training it also fixes memory and cognition speech fluency and speech production, And an important language dependent skill is enabled by this training — that is to say reading. And to a large extent it fixes the brain. You can look down in the brain of a child. in a variety of tasks that scientists have at Stanford, and MIT, and UCSF, and UCLA, and a number of other institutions. And children operating in various language behaviors, or in various reading behaviors, you see for the most extent, for most children, their neuronal responses, complexly abnormal before you start, are normalized by the training.
There’s some stuff about monkeys in the middle that went a little over our heads, but the talk is worth the 20 minute investment.
Like this:
Like Loading...
Tags:brain fitness, dyslexia, education, Fast ForWord, intelligence, language, memory, Michael Merzenich, research, TED, working memory
Posted in auditory processing, brain fitness, computer-assisted learning, dyslexia, Fast ForWord, gifted and talented, language, memory, reading, research, technology | Leave a Comment »
March 1, 2011
Around 2nd or 3rd grade, students begin the transition from learning to read to reading to learn. In the process, they open their minds to a flood of critical information across disciplines. And to incorporate this new knowledge, students must have mastered the basics of reading and achieved automaticity.
At Scientific Learning’s Science of Learning blog, Terri Zezula addresses the criticality of automaticity for students to begin the transition to reading to learn:
In achieving automaticity, we free our brains – our working memories – from the details of the task, allowing us to use that brain power to do more, building on those sets of automatic skills. For our students, achieving automaticity in reading is essential not only to their becoming effective readers, but becoming effective all-around learners. The majority of students make the shift from “learning to read” to “reading to learn” around second or third grade. At this stage, their reading skills have developed to a point of automaticity where they no longer need to use their working memory to facilitate the task of reading, and they can use that memory for things like interpretation, comprehension and creative thinking.
On the other hand, continues Zezula:
Imagine what learning becomes for the struggling student who does not develop this automaticity alongside his or her fellow students. As others begin to learn more and more from their reading, the struggling reader must engage their working memory in the challenge of getting through the letters and words of each sentence as opposed to using that valuable memory to glean meanings and assimilate information. As their reading skills lag, their overall ability to learn suffers.
A previous post here at Thoughts from Be Amazing Learning addressed the same phenomemon:
We hear from parents a lot that their child does just fine with the mechanics of reading (decoding, spelling, etc.), but struggles with comprehension. Reading comprehension is a difficult task, as it represents the synthesis of so many language and literacy skills, from phonemic awareness to sequencing and working memory. As such, it takes time and a lot of practice to develop reading comprehension skills.
It’s important to note, however, that while kids may be struggling with comprehension, the root cause of their struggle may be more foundational in nature. For example, a child may decode well, but if his brain is working overtime on decoding, there may just not be anything left when it comes time to comprehend what he’s just read. Comprehension requires things like a working memory that’s developed enough to remember the beginning of a sentence when you get to the end. Or the first sentence of a paragraph when you get to the last. But if we can get a child’s brain to process more efficiently, the mechanics of reading become easier, which frees up energy for more complex tasks like comprehension.
The good news is that we can help kids’ brains process more efficiently. Just like we exercise our bodies in the gym or on the track to build physical fitness, we can build brain fitness through targeted exercises that adapt to our abilities. If you have a child struggling with reading comprehension or other learning challenges, visit our Web site at http://www.beamazinglearning.com or call (800) 792-4809 to learn how developing foundational cognitive skills can help your child successfully make the transition to reading to learn.
Like this:
Like Loading...
Tags:brain fitness, dyslexia, education, language, memory, reading, study skills, working memory
Posted in attention, auditory processing, brain fitness, Cogmed, dyslexia, executive function, language, memory | Leave a Comment »
February 7, 2011
We were interested to see new research from Belgium that looks at the link between early auditory processing abilities and later reading struggles. Published in January in Research in Developmental Disabilities, the longitudinal study showed that auditory processing and speech recognition struggles in kindergarten and first grade corresponded to dyslexia diagnoses in the third grade.
This new research is in line with previous studies that have determined that the auditory centers of the brain in dyslexic readers are under-activated compared to their typically developing peers (interestingly enough, the visual centers of the brain in dyslexic readers are hyper-activated).
Given the criticality of developing auditory processing abilities in young children, what’s a parent to do?
On her Parent Smart blog, Dr. Martha Burns has a couple suggestions:
- Bed time stories: “It doesn’t matter what the stories are. Many very young children love to hear the same storybook over and over, that is just fine. Try to make a habit of 15 or more minutes a day of “quiet time” before bed in which your child selects a book and you read it together.” Dr. Burns includes age-specific suggestions for story time as well.
- Audio books: “Rather than bringing a DVD player along on a trip, try audio-books. The advantage of an audio book over a DVD is that it builds listening skills which are critical for doing well in school and allows your child to follow along with the written pages as they listen to the book, so it builds reading skills as well.”
An intervention like the Fast ForWord programs may be appropriate as well. A study of public school children with Auditory Processing Disorder showed improvement in phonemic decoding and sight word reading abilities after training with Fast ForWord. And the Stanford study referenced above showed normalization of activity in critical areas of the brain used for reading and significant improvements in reading and oral language skills on a number of assessments after Fast ForWord training.
Like this:
Like Loading...
Tags:auditory processing, brain fitness, dyslexia, Fast ForWord, language, reading
Posted in auditory processing, brain fitness, dyslexia, Fast ForWord, language, reading, research | Leave a Comment »
January 5, 2011
Be Amazing Learning offers programs that address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain information they are exposed to, whether in the classroom or in daily life.
Two programs we use most frequently are Fast ForWord and Cogmed. Both programs are based on the concept of neuroplasticity (the lifelong ability of the brain to reorganize neural pathways based on new experiences). They both are computer-based interventions with rigorous daily protocols. And both have very solid foundational research behind them: Fast ForWord research and Cogmed research.
The programs differ in the cognitive skills they develop. Fast ForWord primarily develops auditory processing rates and auditory working memory, with additional training in sequencing and sustained attention. Cogmed primarily develops working memory (auditory and visual-spatial) and attention skills.
At Be Amazing Learning we recommend one or both of the programs for students, depending on the specific learning or behavior challenge they are dealing with. For example, we typically will recommend Cogmed for students struggling with ADD or ADHD. Cogmed addresses the underlying causes of inattentive behavior and improves attention by developing working memory and the ability to focus on multiple tasks and ignore distractions. (Poor auditory processing abilities can also contribute to attention challenges, and in these cases, the Fast ForWord programs may also be an effective intervention.)
Similarly, for students with dyslexia, we typically recommend the Fast ForWord programs, as they attack the auditory processing disorders that cause reading difficulties. And there’s great research on students with dyslexia showing significant improvements in reading and oral language skills on a number of assessments, as well as normalization of activity in critical areas of the brain used for reading after Fast ForWord training.
And in some cases, such as for students struggling with executive function disorder, we might recommend both programs, because they both effectively develop and strengthen the cognitive skills associated with successful executive function, including :
- Memory – The ability to store information and ideas.
- Attention – The ability to focus on information and tasks, and ignore distractions.
- Processing Rate – The rate at which a student is able to accurately perceive and manipulate information.
- Sequencing – Placing the detail of information in its accustomed order.
The bottom line is that nearly every child can benefit from improved brain processing efficiency. Wherever your child is, Be Amazing Learning can help move them forward. Our programs have been proven to be effective with many types of learners of all ages, from students with diagnosed learning difficulties, to those simply struggling with homework or reading. With Cogmed and Fast ForWord at our disposal, we can design an effective training program to develop a range of foundational cognitive skills and improve academic potential and performance.
Like this:
Like Loading...
Tags:ADD/ADHD, auditory processing, brain fitness, Cogmed, dyslexia, executive function, Fast ForWord, memory, reading, study skills, tutoring, working memory
Posted in ADHD, attention, auditory processing, brain fitness, Cogmed, dyslexia, executive function, Fast ForWord, memory, reading, tutoring | Leave a Comment »
January 4, 2011
Traditional tutoring offers additional help in a particular subject area or with a particular skill. It can be an effective addition to content delivered in the classroom, especially because it can frequently be tailored to a child’s individual needs.
Be Amazing Learning is different because the programs we offer (Fast ForWord and Cogmed) address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain content they are exposed to, whether in the classroom or with a tutor.
Additionally, training cognitive skills with Be Amazing Learning is a one-time shot: kids build their brain fitness with the programs, then move on to better academic performance. Once children have cognitive training, they stay “fit” by using their new cognitive skills. Studies have shown that the improvements in cognitive skills we can help your child achieve are both substantial and enduring. For example, a 4-year longitudinal study conducted at Dallas Independent School District that showed that students who trained with Fast ForWord programs achieved significant gains in reading, and maintained those gains relative to their peers.

For more information about how cognitive training can help your child, visit our Web site or call (800) 792-4809.
Like this:
Like Loading...
Tags:auditory processing, brain fitness, Cogmed, dyslexia, education, Fast ForWord, language, memory, reading, research, results, study skills, tutoring, working memory
Posted in attention, auditory processing, brain fitness, Cogmed, computer-assisted learning, dyslexia, Fast ForWord, memory, reading, research, tutoring | Leave a Comment »
September 29, 2010
Reading is such an incredibly complex task that it’s not notable that some students struggle with reading, but rather miraculous that any of us can read at all. The Children of the Code project calls attention to the problems that we face when our children do not learn to read:
We don’t look at reading difficulties through the lens of how to improve the ‘teaching’ of reading, instead through the lens of ‘understanding the challenges involved in learning to read’ – from the learner’s perspective.
The Children of the Code web site teems with information about reading challenges from experts in the field, including Sally Shawitz, who has used neuro-imaging to understand the basic nature of reading and reading difficulties, and Paula Tallal, whose foundational research into the link between oral and written language led to the development of Fast ForWord.
At Be Amazing Learning, we are committed to offering individualized, validated solutions for students who are struggling with reading. We are intrigued with depth and breadth of interviews on the Children of the Code site from experts in the fields of neuroscience, cognitive psychology, linguistics, instructional design, literacy, and teaching. If you have an interest in reading difficulties you should take a look at this great site.
Like this:
Like Loading...
Tags:decoding, dyslexia, education, families, Fast ForWord, fluency, language, reading, research
Posted in dyslexia, Fast ForWord, reading, research | Leave a Comment »