Archive for the ‘attention’ Category

Moonwalking with Einstein

February 28, 2011

Last weekend’s NY Times Magazine featured an excerpt from journalist Joshua Foer’s new book Moonwalking with Einstein: The Art and Science of Remembering Everything. It’s the fascinating story of his quest to become the memory champion of the United States (add that to the list of things we didn’t know anything about).

As we’ve previously posted, there’s an important distinction between memory and memorization. Nonetheless, memorization techniques can give us clues about memory, particularly from an evolutionary standpoint. For example, Foer highlights a study that showed that expert memorizers have neither anatomically distinguishable brains nor above average levels of cognitive abilities. But what they do share is a higher level of activation in the area of the brain responsible for visual and spatial memory. Experts attribute this to the fact that our ancestors relied on visual spatial memory for survival (where’s the food? where are the predators?).

Foer’s journey to the title is interesting, at least in part because he really set out just to learn about memorization and ended up a champion. The Times article links to two resources for memorizing numbers and names. For more on Foer, check out this story by NPR’s All Things Considered.

Blueberries on the brain

February 9, 2011

The January 2011 issue of Scientific American Mind picks up some research we have been following about flavonoids, which research shows may improve memory, learning and general cognitive function:

Emerging research suggests that compounds in blueberries known as flavonoids may improve memory, learning and general cognitive function, including reasoning skills, decision making, verbal comprehension and numerical ability. In addition, studies comparing dietary habits with cognitive function in adults hint that consuming flavonoids may help slow the decline in mental facility that is often seen with aging and might even provide protection against disorders such as Alzheimer’s and Parkinson’s.

We have previously posted about the impact of flavonoids (which also occur in chocolate) on math skills. In the article we cited, study authors indicated flavonoids worked by increasing blood flow to the brain. This more recent article indicates that researchers believe flavonoids impact cognition by interacting with proteins that are integral to brain-cell structure and function.

Either way, we like the idea of good-tasting foods being good for the brain!

Good kids who do dumb things with their friends

February 8, 2011

Parents of teenagers may frequently find themselves asking their children “What was going through your head?” New research from Temple University indicates that their friends may be to blame.

From the NY Times Well blog:

Teenage peer pressure has a distinct effect on brain signals involving risk and reward, helping to explain why young people are more likely to misbehave and take risks when their friends are watching.

In the study, teenagers and adults played a game with the goal of completing a driving mission in as little time as possible. In the game, participants had to make decisions such as whether to run a yellow light that could improve their time but also increased their chance of a crash. The participants each ran through the game alone and again after being told that two of their friends were watching them while they played. The results?:

Among adults and college students, there were no meaningful differences in risk taking, regardless of  whether friends were watching. But the young teenagers ran about 40 percent more yellow lights and had 60 percent more crashes when they knew their friends were watching. And notably, the regions of the brain associated with reward showed greater activity when they were playing in view of their friends. It was as if the presence of friends, even in the next room, prompted the brain’s reward system to drown out any warning signals about risk, tipping the balance toward the reward.

What’s a parent to do? Study co-author (and author of the book You and Your Adolescent: The Essential Guide for Ages 10-25) Laurence Steinberg, quoted in the Times article, says:

All of us who have very good kids know they’ve done really dumb things when they’ve been with their friends. The lesson is that if you have a kid whom you think of as very mature and able to exercise good judgment, based on your observations when he or she is alone or with you, that doesn’t necessarily generalize to how he or she will behave in a group of friends without adults around. Parents should be aware of that.

Computer-based program relieves ADHD symptoms in children

February 4, 2011

The research validating the effectiveness of Cogmed Working Memory Training at improving attention skills keeps rolling in. Science Daily recently highlighted research by psychologists from Ohio State University, published in the November/December 2010 issue of the Journal of Clinical Child & Adolescent Psychology:

Researchers found significant changes for students who completed the program in areas such as attention, ADHD symptoms, planning and organization, initiating tasks, and working memory.

The study asked parents and teachers to complete observational surveys before and after training, as well as in a 4-month post-training follow up:

Results showed that parents generally rated their children as improving on inattention, overall number of ADHD symptoms, working memory, planning and organization and in initiating tasks. These changes were evident both immediately after treatment and four months later.

One interesting aspect of this study is that unlike previous efficacy studies for Cogmed, this one included students who were on and off medication for their ADHD:

“Most kids with ADHD are on some kind of medication, so it helps to know how this intervention works in these cases,” said study co-author Steven Beck.

In this sample, 60 percent of the students were on medication. The results showed the program was equally effective regardless of whether they were on medication or not.

“Medication for ADHD does not help directly with working memory, and the training program does, so it can be useful,” Beck said.

Solid foundational and efficacy research is a common characteristic of the learning programs we offer. It’s great to see additional research that documents the success of Cogmed with an ever-larger population of struggling learners.

Coach helps with ADHD

February 3, 2011

CNN’s Health Minute feature recently highlighted the use of a life coach by a college student with ADHD:

A little different from our approach, which focuses on the foundational cognitive skills that underlie attention (and other learning) challenges. But clearly helpful as a scaffold to keep this student on track.

Memory vs. Memorization

January 14, 2011

A post at Scientific Learning’s New Science of Learning blog highlights the importance of memorization in early schooling: math facts, counting to 100, reciting a poem, or recalling sight words are all examples of memorization tasks that are prevalent in the early grades.

Memorization, it turns out, is not a particularly advanced skill, centered as it is in the hippocampus of the brain, which is, evolutionarily, one of the oldest parts of the brain:

A great deal of learning in the elementary grades involves the hippocampus. Memorization of spelling rules likes “i before e except after c,” math facts, reading of “sight” words that cannot be sounded out, and geographical facts, just to name a few, demand good memorization skills (hippocampus function.). Reading curriculum used before 1970, like those used when the goal was memorization of the “Dolch” sight words, also stressed memorization skills.

Different from memorization is working memory. Working memory is the cognitive function responsible for retaining, manipulating and using information. We use working memory to delegate the things we encounter to the parts of our brain that can take action. Because of this, working memory is critical for staying focused on a task, blocking out distractions, and keeping us updated and aware about what’s going on around us. And, unlike sight word memorization, working memory is critical for grasping a phonics-based approach to reading, which is prevalent in most American curricula.

As young readers develop, working memory takes on more importance. For example, to gain meaning from text, a student’s working memory must be sufficiently developed to remember the beginning of a sentence when she get to the end. Or the first sentence of a paragraph when she gets to the last.

We have previously highlighted a recent study, published in May 2010 in the Journal Reading and Writing (link is to abstract only), which examined the relationship between working memory and reading achievement, hypothesizing that working memory problems can be a root cause of poor reading comprehension. The researchers found working memory measures were “related with children’s word reading and reading comprehension.”

Even if working memory is more important than memorization for developing reading and other learning skills, we can’t completely abandon memorization (as evolutionarily primitive as it may be). For example, in its report “Foundations for Success” (2008), the National Math Panel emphasized the importance of developing automatic recall of addition, subtraction, multiplication and division facts in order to adequately prepare for algebra and beyond.

Exercise as a Treatment for ADHD

January 13, 2011

Evidence abounds that physical exercise can enhance cognitive functioning. As we previously posted:

  • study at the University of Illinois compared performance on a cognitive test between higher and lower fit 9 and 10 year old students. The higher-fit students performed better on the test, and brain scans indicated they had larger basal ganglia, a part of the brain responsible for impulse control and response resolution.
  • second study by the same researchers compared performance on complex memory tasks between high fit and low fit 9 and 10 year olds. The study found better performance in high fit students, and brain scans showed larger hippocampi, the portion of the brain associated with complex memory tasks.

Over at SharpBrains, Dr. David Rabiner examines a study, recently published in the Journal of Attention Disorders, which looked at whether an extended physical training program can have a positive impact on students struggling with ADHD.

The data is generally positive, suggesting that a physical exercise routine can positively impact fitness, behavior (as observed by parents and teachers) and attention and inhibition response (as measured by neuropsychological assessments). However, as Dr. Rabiner points out:

It is important to put these positive findings into an appropriate perspective. First, even though the activity program was associated with improve ments in several areas, children continued to show clinically elevated difficulties even in areas where improvements were seen. Thus, there was no evidence that the exercise program reduced children’s difficulties into the normative range.

Dr. Rabiner suggests more research is necessary, but that this study suggests that “a vigorous physical activity program could certainly be valuable for many children with ADHD for a variety of reasons, even if the ultimate impact of exercise on core ADHD symptoms is not yet known.”

Simon Says “Pay Attention!”

January 12, 2011

Play is emerging as a theme in this week’s posts. Today, we look at games that can improve children’s attention skills and reduce impulsivity.

At her Parent Smart blog, Dr. Martha Burns, a Speech-Language Pathologist and Adjunct Associate Professor at Northwestern University, highlights Simon Says… and Clap When I Say… as games that can develop impulse control. What is impulse control and why is it important? According to Burns:

An example of impulsivity in a classroom might be yelling out questions , comments or answers  instead of raising one’s hand, or popping up from a desk at inappropriate times, or even looking a someone else’s paper during a test. Impulsivity on the playground might include chasing a ball into the street without checking for cars or hitting someone who accidently bumps into you.

Learning to control these impulses, says Burns, “requires us to stay alert and purposeful and it is a skill all of us must master to reduce impulsivity; so that we stop and think before we act.”

Check out Burns’ post for details on these games that can help your child “play attention!”

The allocation of attentional resources

January 7, 2011

The Dana Foundation Web site has a good summary of some of the most recent research into the underlying causes of attention challenges. The article outlines two we are familiar with: working memory and processing rates:

One theory holds that the disorder is primarily a problem with working memory–the ability to hold information in temporary storage long enough to act on it appropriately, while another group of theories centers around how information is processed in time.

“There are lots of psychological tests that show that ADHD kids just don’t get the timing of things quite right,” he says. “This would explain very nicely the impulsivity that is seen in ADHD; where they are not getting the very fine-grained timing of social interactions, for example.” In the classroom, this might manifest as blurting out the answer to a teacher’s query before one is called upon.

But the bulk of the article focuses on ADHD as a lack of allocation of attentional resources in the brain. From Philip Shaw, Ph. D., a scientist who studies ADHD at the National Institute of Mental Health:

“A child who is not staying on task in school could be paying attention to what’s going on outside the classroom. So it’s not that they are not doing something that is attention-demanding; it’s just that their focus is on something other than what they’re meant to be doing.” From that perspective, he says, thinking about ADHD as a problem with the allocation of attentional resources makes sense.

This may seem a logical explanation to parents and teachers. As the article points out:

Parents of children with ADHD, for example, may find it hard to fathom that a child who can spend hours engrossed in a video game has a problem with attention. Teachers may be confounded by a student who is fully engaged in a music lesson but is distracted or disruptive in other classwork.

The article continues with a description of the neural network of attention, with particular focus on the executive attention network, which “enables the individual to decide which things to attend to among competing brain activity.”

As the article points out in summary, “each of these theories offers tantalizing clues about what might be going wrong in the brains of children with ADHD, but they do not answer all of the questions.” And so the search continues…

The effect of mood on insight

January 6, 2011

We’re suckers for a scientific study that involves watching a Robin Williams standup routine…

Consider the task of listening to a conversation in a noisy room or concentrating on a particularly challenging puzzle. Research shows that these tasks are typically associated with activation of the anterior cingulate cortex in the brain. Cells in this area are active when we narrow our attention to concentrate on a difficult task.

But what about insight – that ability to quickly “see” the solution to a puzzle or problem (think “AHA!”), rather than solve it by brute force? Insight requires a widening of associations, rather than a narrowing. For insight to occur, the brain must be open to looser associations and connections. We must, as the scientists would say, be in a “diffuse attentional state.”

So how do we get there? The New York Times summarizes research that indicates mood is a significant factor, and that humor (here’s where the Robin Williams part comes in) is important:

In a just completed study, researchers at Northwestern University found that people were more likely to solve word puzzles with sudden insight when they were amused, having just seen a short comedy routine.

“What we think is happening,” said Mark Beeman, a neuroscientist who conducted the study with Karuna Subramaniam, a graduate student, “is that the humor, this positive mood, is lowering the brain’s threshold for detecting weaker or more remote connections” to solve puzzles.

So next time you’re stuck on a problem, should you just remember the funny joke you heard last week?

The findings fit with dozens of experiments linking positive moods to better creative problem-solving. “The implication is that positive mood engages this broad, diffuse attentional state that is both perceptual and visual,” said Dr. Anderson. “You’re not only thinking more broadly, you’re literally seeing more. The two systems are working in parallel.”

The Times Web site has a pretty cool interactive experiment that you can use to test the effect of mood on your own insight. Check it out here.


%d bloggers like this: