Archive for the ‘attention’ Category
November 21, 2011
NPR reports that a shortage of drugs used to treat attention challenges, including ADHD, has left parents scrambling to fill prescriptions for their kids. In some cases, parents who are also medicated for attention challenges are having to share their medication with a child.
According to the story, affected drugs include Adderall and the active ingredient in Ritalin.
Full article, including a link to audio of a Morning Edition story covering the shortages is on NPR’s Web site.
Like this:
Like Loading...
Tags:ADD/ADHD
Posted in ADHD, attention | Leave a Comment »
July 27, 2011
The NY Times picked up on new research that offers good news for older individuals hoping to stave off mental decline. Here at Be Amazing Learning, we work more frequently with children and young adults than seniors, but the same concepts of neuroplasticity are at play early and late in life.
The multi-year study, performed at the University of Waterloo in Ontario and published in the Archives of Internal Medicine, showed that subjects who engaged in even modest exercise (walking around the block, gardening, cleaning) maintained cognitive function when compared to sedentary subjects.
That exercise can help the brain is not a particularly new concept (we have previously posted on the topic), but what the study showed (according to Professor Laura Middleton, the study’s lead author) that “vigorous exercise isn’t necessary to protect your mind. I think that’s exciting. It might inspire people who would be intimidated about the idea of quote-unquote exercising to just get up and move.”
Another study identified in the Times article indicates that even lifting weights (as opposed to aerobic exercise) can be an effective intervention. That study, published in Neurobiology of Aging, indicated that “light-duty weight training changes how well older women think and how blood flows within their brains.”
So the latest research indicates that exercise of any kind and any intensity can help stave off mental decline. So let’s get out there!
Like this:
Like Loading...
Tags:brain fitness, executive function, exercise, language, memory, research
Posted in attention, auditory processing, brain fitness, exercise, health, language, memory | Leave a Comment »
June 20, 2011
A common question from parents who are considering a program like Fast ForWord or Cogmed to improve foundational cognitive skills centers around when they might see improvements in their children. While parents frequently observe immediate improvements in skills like attention, comprehension, and general ease of reading, sometimes these gains are not immediately apparent. This is because the programs are developing cognitive skills (such as working memory and processing speed) that are critical for developing learning, attention and reading skills. The programs support the development of more complex learning and reading skills, but don’t directly train them.
A 2008 study from the University of Michigan, which looked at measures of fluid intelligence before and after Cogmed training, supports this idea. The LA Times recently reported on the study:
When the children were tested at the end of the month of training, the Michigan researchers at first found scant differences between the group that got the working-memory training and the general knowledge group. Although those who had received working-memory training were better at holding several items in mind for a short while, on a test of abstract reasoning — fluid intelligence — they were, as a group, no smarter than the control group.
But then the researchers took a closer look and noticed a clear pattern: The children who had improved the most on the memory-training task did indeed perform better on the fluid intelligence test. And three months later, they still did better as a group than both the control group and the children who hadn’t improved.
The University of Michigan study was published in the Proceedings of the National Academy of Sciences.
Like this:
Like Loading...
Tags:brain fitness, Cogmed, executive function, Fast ForWord, intelligence, research, working memory
Posted in attention, brain fitness, Cogmed, computer-assisted learning, Fast ForWord, technology | Leave a Comment »
June 17, 2011
Be Amazing Learning client Sami Merit was featured on San Francisco Bay Area ABC 7 News, as part of a story that looked at Fast ForWord use at home and at an Oakland elementary school.
Hooray Sami!
http://abclocal.go.com/kgo/story?section=news/health&id=8195812
Like this:
Like Loading...
Tags:auditory processing, brain fitness, education, families, Fast ForWord, press coverage, reading comprehension, research, results
Posted in ADHD, attention, auditory processing, brain fitness, company information, computer-assisted learning, dyslexia, Fast ForWord, parent feedback, reading | Leave a Comment »
June 17, 2011
Today’s NY Times reports on a planned study of the effectiveness of Posit Science’s Brain Fitness Program on veterans who suffered traumatic brain injuries (TBI) in combat. Posit Science was founded by Dr. Michael Merzenich, whose research into neuroplasticity forms the basis for the Fast ForWord programs.
Dr. Merzenich’s core claim is that brain structure is always changing, based on what people do and what they pay attention to. By doing specific brain exercises that focus and refine attention, he says, you can adjust the underlying structure of your brain. It is well established that this happens when we learn a new skill, like dancing. The question is, Can the same processes be employed to correct for brain damage?
Psychologists and others observing the study range from the cautiously optimistic (quoted in the Times, Gary Abrams, director of neurorehabilitation at U.C.S.F. and head of the T.B.I. support clinic at the San Francisco VA Medical Center, says “It is theoretically reasonable, but will it actually work to help veterans?”) to the skeptical (also cited, in the Times, Dr. P. Murali Doraiswamy, a Duke University psychiatrist, is “not convinced that gains translate into long-term benefits that can be generalized to daily challenges like remembering where the car is parked”).
The study will involve 132 veterans suffering from TBI. They’ll undergo a battery of cognitive tests before the program, and again 3 and 6 months after the program.
The Times article also makes a critical point that we frequently make about the neuroplasticity-based programs (Fast ForWord and Cogmed) that we use with struggling learners: the programs are different because they address the underlying cognitive deficits, rather than compensatory strategies.
Like this:
Like Loading...
Tags:ADD/ADHD, auditory processing, brain fitness, Brain Fitness Program, Cogmed, executive function, Fast ForWord, memory, Michael Merzenich, research, technology, working memory
Posted in ADHD, attention, auditory processing, brain fitness, Cogmed, computer-assisted learning, executive function, Fast ForWord, memory, research | Leave a Comment »
April 27, 2011
It seems like most research studies we read about the impact parents have on the development of young children make us wish we had a do-over card. But here’s some refreshing news for those of us parents who doing the best we can: some of our mistakes can actually help our kids!
From Science Daily:
A team of cognitive scientists has good news for parents who are worried that they are setting a bad example for their children when they say “um” and “uh.” A study conducted at the University of Rochester’s Baby Lab shows that toddlers actually use their parents’ stumbles and hesitations (technically referred to as disfluencies) to help them learn language more efficiently.
For instance, say you’re walking through the zoo with your two-year-old and you are trying to teach him animal names. You point to the rhinoceros and say, “Look at the, uh, uh, rhinoceros.” It turns out that as you are fumbling for the correct word, you are also sending your child a signal that you are about to teach him something new, so he should pay attention, according to the researchers.
The conclusions are from a study published online on April 14 in the journal Developmental Science.
Quoted in the Science Daily article, lead study author Celeste Kidd, a graduate student at the University of Rochester, says “We’re not advocating that parents add disfluencies to their speech, but I think it’s nice for them to know that using these verbal pauses is OK — the “uh’s” and “um’s” are informative.”
If you’re interested in more about how parents can support their children’s language development, check out this post on the developing brain.
Like this:
Like Loading...
Tags:families, language, nature vs. nurture, research
Posted in attention, auditory processing, language, research | Leave a Comment »
April 18, 2011
This weekend’s NY Times Magazine is all about health – everything from the toxicity of sugar to the question of whether cell phones cause cancer. One article that caught our eye (at least after a cup of morning coffee) asks “How little sleep can you get away with?”
David Dinges, the head of the Sleep and Chronobiology Laboratory at the Hospital at the University of Pennsylvania has asked just this question, and the answer is: you should really try to get 8 hours. Dinges’ 2003 study assigned dozens of subjects to three different groups: some slept four hours, others six hours and others, for the lucky control group, eight hours — for two weeks in the lab. The study used a measure called psychomotor vigilance task, or PVT. PVT is a “tedious but simple if you’ve been sleeping well. It measures the sustained attention that is vital for pilots, truck drivers, astronauts. Attention is also key for focusing during long meetings; for reading a paragraph just once, instead of five times; for driving a car. It takes the equivalent of only a two-second lapse for a driver to veer into oncoming traffic.”
The results?
Those who had eight hours of sleep hardly had any attention lapses and no cognitive declines over the 14 days of the study. What was interesting was that those in the four- and six-hour groups had P.V.T. results that declined steadily with almost each passing day. Though the four-hour subjects performed far worse, the six-hour group also consistently fell off-task. By the sixth day, 25 percent of the six-hour group was falling asleep at the computer. And at the end of the study, they were lapsing fives times as much as they did the first day.
The six-hour subjects fared no better — steadily declining over the two weeks — on a test of working memory in which they had to remember numbers and symbols and substitute one for the other. The same was true for an addition-subtraction task that measures speed and accuracy. All told, by the end of two weeks, the six-hour sleepers were as impaired as those who, in another Dinges study, had been sleep-deprived for 24 hours straight — the cognitive equivalent of being legally drunk.
These results are particularly interesting in light of a study recently published in the journal SLEEP that indicated that loss of an hour of sleep per night among children with ADHD had a significant impact on their ability to remain focused and sustain attention From a Science Daily article summarizing the research: “The study suggests that even moderate reductions in sleep duration can affect neurobehavioral functioning, which may have a negative impact on the academic performance of children with ADHD.”
Results of multivariate analyses of variance show that after mean nightly sleep loss of about 55 minutes for six nights, the performance of children with ADHD on a neurobehavioral test deteriorated from the subclinical range to the clinical range of inattention on four of six measures, including omission errors (missed targets) and reaction time. Children with ADHD generally committed more omission errors than controls. Although the performance of children in the control group also deteriorated after mean nightly sleep loss of 34 minutes for six nights, it did not reach a clinical level of inattention on any of the six measures.
Reut Gruber, PhD, assistant professor in the department of psychiatry at McGill University and director of the Attention, Behavior and Sleep Laboratory at Douglas Mental Health University Institute in Montreal, Québec, quoted in the Science Daily article, has advice for parents:
“The reduction in sleep duration in our study was modest and similar to the sleep deprivation that might occur in daily life,” Gruber said. “Thus, even small changes in dinner time, computer time, or staying up to do homework could result in poorer neurobehavioral functioning the following day and affect sustained attention and vigilance, which are essential for optimal academic performance.”
…
“An important implication of the present study is that investments in programs that aim to decrease sleep deprivation may lead to improvements in neurobehavioral functioning and academic performance,” she said.
I don’t know about you, but we’re going to go take a nap.
Like this:
Like Loading...
Tags:ADD/ADHD, brain fitness, education, executive function, memory, research, study skills, working memory
Posted in ADHD, attention, brain fitness, executive function, memory, perception | Leave a Comment »
March 29, 2011
Auditory processing describes what happens when the brain recognizes and interprets sounds. Humans hear when energy that we recognize as sound travels through the ear and is changed into electrical information that can be interpreted by the brain. For many students, something is adversely affecting the processing or interpretation of this information. As a result, these students often do not recognize subtle differences between sounds in words, even though the sounds themselves are loud and clear. For example: “Tell me how a chair and a couch are alike” may sound to a child struggling with auditory processing like “Tell me how a hair and a cow are alike.”
These kinds of problems are more likely to occur when the child is in a noisy environment or is listening to complex information.
The Temporal Dynamics of Learning Center (TDLC) at the University of California is one of six Science of Learning Centers funded by the National Science Foundation. Its purpose is “to understand how the element of time and timing is critical for learning, and to apply this understanding to improve educational practice.”
What is the role of timing in learning? From the TDLC Web site:
When you learn new facts, interact with colleagues and teachers, experiment with new gadgets, or engage in countless other learning activities, timing plays a role in the functioning of your neurons, in the communication between and within sensory systems, and in the interactions between different regions of your brain. The success or failure of attempts to communicate using gestures, expressions and verbal language also depend on timing.
In short, timing is critical for learning at every level, from learning the precise temporal patterns of speech sounds, to learning appropriate sequences of movements, to optimal training and instructional schedules for learning, to interpreting the streams of social signals that reinforce learning in the classroom.
Learning depends on the fine-scale structure of the timing between stimuli, response, and reward. The brain is exquisitely sensitive to the temporal structure of sensory experience:
- at the millisecond time scale in the auditory system;
- at the second time scale in reinforcement learning;
- at the minute time scale for action-perception adaptation; and
- at the day-to-week time scale for consolidation and maturation.
Each level of learning has its own temporal dynamics, and its own timing constraints that affect learning. These levels are not independent, but instead, timing constraints at one level affect learning at another level in a nested way. For example, the dynamics at the cellular level, which is often on the order of milliseconds, implement learning on the whole-brain and behavioral level on much longer time scales, including memories that last a lifetime.
The past decade of neuroscience research demonstrates that the intrinsic temporal dynamics of processes within the brain also reinforce and constrain learning. For example, we have discovered that slow learners tend to have slow “shutter speeds” in terms of how their brains take in and process information. For some poor readers, the underlying problem is the their inability to perceive fast acoustic changes in speech sounds (phonemes) that must be accurately perceived in order to learn letter-sound correspondence rules for reading.
Fortunately, says the TDLC Web site, “Neuroscience-based training regimes that improve this temporal processing ability improve both spoken and written language learning in struggling readers.”
One such training program is the Fast ForWord program, which can be an effective intervention for children with struggling with processing rates because it goes right to the cause of the problem, strengthening the gray matter in the area of the brain responsible for processing auditory information. With Fast ForWord, children are first exposed to sounds that are modified to enhance the minute acoustic differences between similar speech sounds. As children demonstrate proficiency and build new neural pathways, the program automatically reduces the level of modification, until eventually students are challenged to process normal speech sounds.
When their brains are processing speech sounds at peak efficiency, students can better recognize and discriminate the rapidly changing sounds that are important for discriminating phonemes (the smallest units of speech that distinguish one word from another). As a result, they will more easily:
- Attend and respond to directions and class discussions
- Remember questions, directions, and information
- Learn to read and become a better reader
Like this:
Like Loading...
Tags:auditory processing, brain fitness, decoding, education, executive function, Fast ForWord, language, perception, reading, reading comprehension, research, UC San Diego, writing
Posted in ADHD, attention, auditory processing, brain fitness, computer-assisted learning, dyslexia, Fast ForWord, perception, research | Leave a Comment »
March 24, 2011
Research conducted at the University of Michigan and Eckerd College, and published in the current issue of Personality and Individual Differences suggests that adults with ADHD are more creative than their non-attention-impaired peers. The research also indicates that adults with ADHD are “ideators” (they like to generate ideas), while non-ADHD adults tend to be “clarifiers” (who prefer to define and structure problems) and “developers” (who who elaborate or refine ideas and solutions).
We frequently think about ADHD as a disability, and it can have crippling effects on students’ ability to focus in a classroom setting and to adjust academically and socially. However, as study co-author and associate professor at the University of Michigan Priti Shah says (quoted in a Science Daily article summarizing the research): “Individuals who are not succeeding as well academically may benefit from understanding that there may be tradeoffs associated with ADHD. With extra motivation to overcome difficulties in planning, attention, and impulsivity, they may be able to take greater advantage of their creative strengths.”
Like this:
Like Loading...
Tags:ADD/ADHD, creativity, executive function, intelligence, study skills
Posted in ADHD, attention, brain fitness, creativity, executive function, teenagers | Leave a Comment »
March 1, 2011
Around 2nd or 3rd grade, students begin the transition from learning to read to reading to learn. In the process, they open their minds to a flood of critical information across disciplines. And to incorporate this new knowledge, students must have mastered the basics of reading and achieved automaticity.
At Scientific Learning’s Science of Learning blog, Terri Zezula addresses the criticality of automaticity for students to begin the transition to reading to learn:
In achieving automaticity, we free our brains – our working memories – from the details of the task, allowing us to use that brain power to do more, building on those sets of automatic skills. For our students, achieving automaticity in reading is essential not only to their becoming effective readers, but becoming effective all-around learners. The majority of students make the shift from “learning to read” to “reading to learn” around second or third grade. At this stage, their reading skills have developed to a point of automaticity where they no longer need to use their working memory to facilitate the task of reading, and they can use that memory for things like interpretation, comprehension and creative thinking.
On the other hand, continues Zezula:
Imagine what learning becomes for the struggling student who does not develop this automaticity alongside his or her fellow students. As others begin to learn more and more from their reading, the struggling reader must engage their working memory in the challenge of getting through the letters and words of each sentence as opposed to using that valuable memory to glean meanings and assimilate information. As their reading skills lag, their overall ability to learn suffers.
A previous post here at Thoughts from Be Amazing Learning addressed the same phenomemon:
We hear from parents a lot that their child does just fine with the mechanics of reading (decoding, spelling, etc.), but struggles with comprehension. Reading comprehension is a difficult task, as it represents the synthesis of so many language and literacy skills, from phonemic awareness to sequencing and working memory. As such, it takes time and a lot of practice to develop reading comprehension skills.
It’s important to note, however, that while kids may be struggling with comprehension, the root cause of their struggle may be more foundational in nature. For example, a child may decode well, but if his brain is working overtime on decoding, there may just not be anything left when it comes time to comprehend what he’s just read. Comprehension requires things like a working memory that’s developed enough to remember the beginning of a sentence when you get to the end. Or the first sentence of a paragraph when you get to the last. But if we can get a child’s brain to process more efficiently, the mechanics of reading become easier, which frees up energy for more complex tasks like comprehension.
The good news is that we can help kids’ brains process more efficiently. Just like we exercise our bodies in the gym or on the track to build physical fitness, we can build brain fitness through targeted exercises that adapt to our abilities. If you have a child struggling with reading comprehension or other learning challenges, visit our Web site at http://www.beamazinglearning.com or call (800) 792-4809 to learn how developing foundational cognitive skills can help your child successfully make the transition to reading to learn.
Like this:
Like Loading...
Tags:brain fitness, dyslexia, education, language, memory, reading, study skills, working memory
Posted in attention, auditory processing, brain fitness, Cogmed, dyslexia, executive function, language, memory | Leave a Comment »