Archive for the ‘ADHD’ Category

Simon Says “Pay Attention!”

January 12, 2011

Play is emerging as a theme in this week’s posts. Today, we look at games that can improve children’s attention skills and reduce impulsivity.

At her Parent Smart blog, Dr. Martha Burns, a Speech-Language Pathologist and Adjunct Associate Professor at Northwestern University, highlights Simon Says… and Clap When I Say… as games that can develop impulse control. What is impulse control and why is it important? According to Burns:

An example of impulsivity in a classroom might be yelling out questions , comments or answers  instead of raising one’s hand, or popping up from a desk at inappropriate times, or even looking a someone else’s paper during a test. Impulsivity on the playground might include chasing a ball into the street without checking for cars or hitting someone who accidently bumps into you.

Learning to control these impulses, says Burns, “requires us to stay alert and purposeful and it is a skill all of us must master to reduce impulsivity; so that we stop and think before we act.”

Check out Burns’ post for details on these games that can help your child “play attention!”

The allocation of attentional resources

January 7, 2011

The Dana Foundation Web site has a good summary of some of the most recent research into the underlying causes of attention challenges. The article outlines two we are familiar with: working memory and processing rates:

One theory holds that the disorder is primarily a problem with working memory–the ability to hold information in temporary storage long enough to act on it appropriately, while another group of theories centers around how information is processed in time.

“There are lots of psychological tests that show that ADHD kids just don’t get the timing of things quite right,” he says. “This would explain very nicely the impulsivity that is seen in ADHD; where they are not getting the very fine-grained timing of social interactions, for example.” In the classroom, this might manifest as blurting out the answer to a teacher’s query before one is called upon.

But the bulk of the article focuses on ADHD as a lack of allocation of attentional resources in the brain. From Philip Shaw, Ph. D., a scientist who studies ADHD at the National Institute of Mental Health:

“A child who is not staying on task in school could be paying attention to what’s going on outside the classroom. So it’s not that they are not doing something that is attention-demanding; it’s just that their focus is on something other than what they’re meant to be doing.” From that perspective, he says, thinking about ADHD as a problem with the allocation of attentional resources makes sense.

This may seem a logical explanation to parents and teachers. As the article points out:

Parents of children with ADHD, for example, may find it hard to fathom that a child who can spend hours engrossed in a video game has a problem with attention. Teachers may be confounded by a student who is fully engaged in a music lesson but is distracted or disruptive in other classwork.

The article continues with a description of the neural network of attention, with particular focus on the executive attention network, which “enables the individual to decide which things to attend to among competing brain activity.”

As the article points out in summary, “each of these theories offers tantalizing clues about what might be going wrong in the brains of children with ADHD, but they do not answer all of the questions.” And so the search continues…

Fast ForWord vs. Cogmed

January 5, 2011

Be Amazing Learning offers programs that address foundational cognitive skills, rather than academic content. We work on helping children learn better. By developing skills such as working memory, attention, sequencing, and brain processing rates, our programs don’t simply give kids new academic knowledge; instead, they equip kids’ brains to better access and retain information they are exposed to, whether in the classroom or in daily life.

Two programs we use most frequently are Fast ForWord and Cogmed. Both programs are based on the concept of neuroplasticity (the lifelong ability of the brain to reorganize neural pathways based on new experiences). They both are computer-based interventions with rigorous daily protocols. And both have very solid foundational research behind them: Fast ForWord research and Cogmed research.

The programs differ in the cognitive skills they develop. Fast ForWord primarily develops auditory processing rates and auditory working memory, with additional training in sequencing and sustained attention. Cogmed primarily develops working memory (auditory and visual-spatial) and attention skills.

At Be Amazing Learning we recommend one or both of the programs for students, depending on the specific learning or behavior challenge they are dealing with. For example, we typically will recommend Cogmed for students struggling with ADD or ADHD. Cogmed addresses the underlying causes of inattentive behavior and improves attention by developing working memory and the ability to focus on multiple tasks and ignore distractions. (Poor auditory processing abilities can also contribute to attention challenges, and in these cases, the Fast ForWord programs may also be an effective intervention.)

Similarly, for students with dyslexia, we typically recommend the Fast ForWord programs, as they attack the auditory processing disorders that cause reading difficulties. And there’s great research on students with dyslexia showing significant improvements in reading and oral language skills on a number of assessments, as well as normalization of activity in critical areas of the brain used for reading after Fast ForWord training.

And in some cases, such as for students struggling with executive function disorder, we might recommend both programs, because they both effectively develop and strengthen the cognitive skills associated with successful executive function, including :

  • Memory – The ability to store information and ideas.
  • Attention – The ability to focus on information and tasks, and ignore distractions.
  • Processing Rate – The rate at which a student is able to accurately perceive and manipulate information.
  • Sequencing – Placing the detail of information in its accustomed order.

The bottom line is that nearly every child can benefit from improved brain processing efficiency.  Wherever your child is, Be Amazing Learning can help move them forward. Our programs have been proven to be effective with many types of learners of all ages, from students with diagnosed learning difficulties, to those simply struggling with homework or reading. With Cogmed and Fast ForWord at our disposal, we can design an effective training program to develop a range of foundational cognitive skills and improve academic potential and performance.

Understanding Attention Deficit Disorder

December 15, 2010

When the experts can’t seem to agree, what’s a parent to do? We posted recently about two apparently contradictory studies about ADHD diagnosis, one that highlighted a significant increase in diagnoses, and another that indicated that as many as a million kids are misdiagnosed. In the NY Times 18 and Under column, Dr. Perri Klass picks up this theme in a recent segment, “Untangling the Myths about Attention Deficit Disorder.”

Dr. Klass describes how in the face of overwhelming evidence to the contrary, the sense remains that ADHD is not a real medical challenge, but is rather an effect of our multitasking, distracted, and overscheduled lives. But, as Klass points out, there are examples in the literature that go back 150 years that describe children who struggled with attention (well before television corrupted their ability to focus). And, as we have also pointed out, recent studies have gone a long way towards establishing the neurological foundation of attention challenges. From Klass column:

  • Imaging studies of people with attention deficits have shown a consistent pattern of below-normal activity in the brain’s frontal lobes, where so-called executive function resides.
  • paper last month [identified] a gene, LPHN3, that is associated both with [ADHD] and with a favorable response to stimulants.

Though studies do point to a genetic root to ADHD, recent research has also identified environmental factors that increase the likelihood of developing attention challenges in children who may have a genetic predisposition towards the disorder. And we know that the active engagement in language with children is critical for developing attention and focus (and that TV and the Internet don’t help). In short, it’s complicated.

Good News For Control Freaks!

December 7, 2010

So screams the first line of a recent article on Science Daily. What’s the good news? A study, published in the journal Nature Neuroscience, shows that “having some authority over how one takes in new information significantly enhances one’s ability to remember it.”

The study compared active and passive learning in a novel way: participants were presented with an array of objects to be memorized, masked by a gray screen. A “viewing window” allowed the study participants to see one object at a time. To test active learning, the participants were able to control the window using a computer mouse. Passive learners viewed a recorded version of the viewing made by an earlier active learner.

The study found significant differences in brain activity in the active and passive learners. Those who had active control over the viewing window were significantly better than their peers at identifying the original objects and their locations.

Cool enough, but to get to a neurological explanation for the phenomenon, the researchers repeated the study with individuals with amnesia (the impaired ability to learn new things) as a result of damage to the hippocampus (the portion of the brain responsible for many memory-related functions). For these participants, there was no difference in recall between active and passive learning.

Additionally, brain imaging of healthy participants indicated that:

Hippocampal activity was highest in the active subjects’ brains during these tests. Several other brain structures were also more engaged when the subject controlled the viewing window, and activity in these brain regions was more synchronized with that of the hippocampus than in the passive trials.

We’re not so sure what to make of the neurological findings in the study, but the clear differences between active and passive learning have lots of relevance for education. It explains why television makes a lousy teaching tool, and why actively engaging students in reading (for example, stopping to ask them questions about what they’ve just read or what they expect to happen next) is helpful for students.

Getting to the truth on ADHD diagnosis

December 2, 2010

We just came across two studies related to the diagnosis of Attention Deficit/Hyperactivity Disorder (ADHD) that could flat-out baffle a parent struggling to get to the root of their child’s struggles:

  • The first, a study by the Centers for Disease Control and Prevention, indicates that as many 10% of American children may have ADHD. Additionally, this represents a 22% increase in the occurrence of ADHD between 2003 and 2007 (the last year for which data are available). Researchers site increased awareness and better screening as possible causes for the increase.
  • The second study, by Michigan State Economist Todd Elder, (to be published in an upcoming issue of the Journal of Health Economics), indicates that as many as 1 million students in the United States are mis-diagnosed with ADHD. According to Elder, many of the students who exhibit poor behavior and inattention are simply younger than their classmates. The inattentive behavior, says Elder, may simply “be because he’s 5 and the other kids are 6. There’s a big difference between a 5-year-old and a 6-year-old, and teachers and medical practitioners need to take that into account when evaluating whether children have ADHD.”

ADHD diagnosis is challenging, because it is generally based on a clinical evaluation of reported behavior. We’ve previously posted on recent efforts to develop a clinical test for attention challenges, and there is research as well that indicates that ADHD may be a genetic disorder.

It’s important to accurately diagnose attention or other learning challenges that may be holding a student back from reaching his potential. However, many attention and other learning challenges, whether or not they reach the level of a diagnosed disorder, can be addressed by developing the foundational cognitive skills that support attentive behavior and learning. For example, working memory and processing speed are critical cognitive skills that may be less than fully developed in students with attention challenges (even if those challenges don’t rise to the level of a formal ADHD diagnosis). Scientifically-validated programs exist to improve these critical skills in all learners, whether typically developing or struggling with a diagnosed learning difficulty.

Be Amazing Learning Offers Cogmed Programs for Attention Challenges

November 15, 2010

Be Amazing Learning is pleased to announce that we now offer Cogmed Working Memory Training Programs!

Cogmed is a computer-based solution for attention problems caused by poor working memory. Cogmed combines cognitive neuroscience with innovative computer game design and Be Amazing Learning’s close professional support to deliver substantial and lasting benefits. The program consists of 25 daily training sessions, each 30-45 minutes long. Individuals work on the program five days per week for five weeks. Each session consists of a selection of various tasks that target the different aspects of working memory. The difficulty level of each task is adjusted in real time according to a highly sensitive and specific algorithm.

Individuals train on a computer at home, in school, or at work. During training, performance is tracked online and can be viewed by the individual and learning specialists from Be Amazing Learning, who provide feedback and support throughout the training.

Cogmed can be an effective intervention for ADD/ADHD and Executive Function Disorder, as well as for the 1 in 10 typically developing students who have working memory challenges that are holding them back from reaching their full potential.

To find out more or get started, visit our Web site or call (800) 792-4809.

You might also be interested in these recent posts on the importance of working memory for learning:

What’s going on in there? A look inside the teenage brain

November 12, 2010

Research tells us that significant brain development occurs in the first few years of life: the brain reaches 95% of its adult size by age 6.

But recent brain studies show that significant brain development occurs around adolescence. Up to age 12, the brain is adding gray matter (or, to put it more technically, “cortical thickness” increases), at which point, gray matter begins to thin, as the brain prunes connections that developed in childhood, but are no longer deemed necessary.

The PBS series Frontline recently dedicated a show to the teenage brain. The show’s Web site is loaded with content, including the transcript of interviews with several researchers who are looking at the development of the teenage brain. One in particular that caught our eye is with Dr. Jay Giedd, a neuroscientist at the National Institute of Mental Health. Dr. Giedd is focused on how to turn what we’re learning about the brain into practical advice for parents, teachers and teenagers. Now that we have established the concept of brain plasticity, says Giedd, researchers are turning to:

… the forces that can guide this plasticity. How do we optimize the brain’s ability to learn? Are schools doing a good job? Are we as parents doing a good job? And the challenge now is to … bridging the gap between neuroscience and practical advice for parents, teachers and society. We’re not there yet, but we’re closer than ever, and it’s really an exciting time in neuroscience.

At Be Amazing Learning, we regularly work with teenagers who themselves (or whose parents) are looking for solutions for their developing brains. In many cases, these teens have difficulty planning, organizing, and paying attention to and remembering details. Cogmed and Fast ForWord programs can be effective interventions for children and teens with these “executive function” deficits because they develop and strengthen the cognitive skills associated with successful executive function, including working memory, attention and processing rates.

The Frontline series on the teenage brain is fantastic, and there’s a bunch of information available on the show Web site. We’ll be highlighting additional interviews in future posts.

Baby’s Developing Brain

November 3, 2010

Over at the Science of Learning blog, Dr. Martha Burns has just completed a two part series on the development of the infant brain. The good news and bad news for parents is that we play a significant role.

In August, Dr. Burns described the infant brain as a learning machine: working to determine the relevant information about language and the environment, while designing itself, quickly, to become an expert in said language and environment. The parents’ role is to provide an environment that fosters the development of skills that will be helpful later in life.

In her recent conclusion, Dr. Burns provides some more detail on how parents can help the developing infant brain, especially with the goal of developing the kind of sustained attention skills required in a classroom. The brain, says Dr. Burns, wires itself for learning based on early stimulation and experience. To facilitate this development:

  • Parents of infants can build sustained attention to speech by ensuring that children are seeing and hearing speech at the same time. In other words, get in their face!
  • Parents of older children should set aside time for reading together or talking about the highlights of the day.

Getting a child accustomed to sitting for 30 minutes and listening to songs or stories will establish the attention skills required in school.

Oh. And unfortunately, while this probably goes without saying, lay off the TV:

The American Pediatric Association has recently published research indicating that too much exposure to television during the first two years of life seems to increase the likelihood that the child will be diagnosed with Attention Deficit Disorder in the early school years.

We have previously posted about the importance of engaging children with language. From that posting:

Particularly in the critical stage of brain development (when only stimulation is required to develop neural pathways), continuous exposure to language is of utmost importance. The differences in students early experiences with language and literacy are meaningful: by first grade, children whose parents have engaged them with language know twice as many words as those whose parents have not. And it continues: high school seniors near the top of their class know four times as many words as their lower-performing peers, whose vocabularies are equivalent to high-performing third graders.

Multi-tasking: Can we do it?

November 1, 2010

Sure. But only up to a point. Our brains can handle two activities, but not three. Which might explain why we have a hard time making decisions when we’re faced with more than two choices.

In the brain, the medial prefrontal cortex (MFC) keeps track of what we’re doing. When we’re working on two tasks, it can divide its attentions, with one half of the region focusing on one task, and the other half on the second task. But, according to researcher Etienne Koechlin of the Universite Pierre et Marie Curie in Paris, we’re actually “divide tasking”, rather than multi-tasking. And things get pretty muddled if we try to add a third task.

Koechlin’s research, “Divided Representation of Concurrent Goals in the Human Frontal Lobes,” was published in the journal Science.

In an interview for Live Science, Koechlin said:

What the results really show is that we can readily divide tasking. We can cook, and at the same time talk on the phone, and switch back and forth between these two activities. However, we cannot multitask with more than two tasks.

Koechlin’s study used fMRI brain scans to monitor 32 subjects as they watch upper case letters on a screen. The subjects had to determine if the letters were presented in the correct order to spell a certain word, such as B-R-A-I-N. They received a monetary reward if they made no errors. As the rewards increased in value, the researchers saw more activity in the MFC.

The subjects were then presented with lower case letters as well, and had to determine if both the upper case and lower case letters spelled a word, B-R-A-I-N and b-r-a-i-n. This required the subjects to switch back and forth between tasks.

During this dual task, the MFC divided up the labor. One hemisphere of the brain encoded the reward associated with the upper case letter task, and so showed activity during that task, while the other region encoded the reward associated with the lower case task.

Essentially, the brain behaved “as if each frontal lobe was pursuing its own goal,” Koechlin said.

When researchers introduced a third letter-matching task, they saw the subject’s accuracy drop considerably. In essence, there was no where for the third task to go.

As for decision-making, Koechlin thinks his results may explain why it’s difficult for us to decide between more than two options:

Previous work has indicated that people like binary choices, or decisions between two things. They have difficulty when decisions involve more than two choices, Koechlin said. When faced with three or more choices, subjects don’t appear to evaluate them rationally; they simply start discarding choices until they get back to a binary choice.
This is perhaps because your brain can’t keep track of the rewards involved with more than two choices, Koechlin said.

If you’re interested in reading more about multi-tasking, check out this episode from NPR’s Talk of the Nation, featuring NPR science correspondent Jon Hamilton and University of Michigan professor Daniel Weissman.


%d bloggers like this: